Next-Generation Data Management Systems and Software Tools
下一代数据管理系统和软件工具
基本信息
- 批准号:RGPIN-2019-04620
- 负责人:
- 金额:$ 2.4万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Modern data-intensive applications, such as machine learning and data mining, fundamentally depend on database systems to meet their performance, functionality and reliability requirements. This puts pressing needs on database systems to best utilize the hardware infrastructure. The recent commoditization of persistent memory (PM) and programmable networks is transforming both on-premise and cloud infrastructure. They bring many opportunities to optimize database systems, but also invalidate many prior designs and assumptions. Existing designs are not ready and will lead to sub-optimal results. This research program explores key principles for building next-generation database systems in the context of PM and programmable networks through the following three modules.
1. Persistent Memory Database System: PM fills the gap between main memory and storage, thus has the potential of enabling an "ideal" database system that commits transactions fast, recovers instantly, and performs as fast as today's main-memory databases but at a lower cost. Existing work often has to trade off some of these features for performance. This research leverages the diversity of PM (e.g., NVDIMMs, Intel Optane) to realize the aforementioned desirable functionality without tradeoffs.
2. Database-Network-PM Co-design: Future servers will be equipped with large amounts of PM and interconnected by programmable networks. This combination opens up opportunities for applications to offload operations to the network with immediate persistence by PM, freeing up precious CPU cores for more useful work. It requires a coordinated effort to co-design components in the network, use of PM and database system components to reap the full benefits of such hardware, which is the objective of this research.
3. Efficient and Reliable Tools for Programming PM and Fast Networks: The making of database systems relies on tools suitable for persistent memory and future programmable networks. But existing tools fall short on data integrity, reliability and programmability. These problems must be solved before PM and programmable networks can be widely adopted. This research focuses on such issues, with a final goal of creating and maintaining a framework and tools that evolve with future PM and programmable network technologies.
Impact: With the recent commoditization, PM and programmable networks will likely become part of the standard infrastructure for data-intensive applications. This research program is necessary for database systems and tools to continue to evolve with hardware advances. It will enhance Canada's strengths in related areas and benefit applications that rely on database systems, e.g., data mining, machine learning and visualization, with high-performance yet low-cost solutions. It will contribute to Canadian economy by training highly qualified personnel (including female students and under-represented groups) whose expertise are in high demand in academia and industry.
现代数据密集型应用程序,例如机器学习和数据挖掘,从根本上依赖数据库系统来满足其性能、功能和可靠性要求。这迫切需要数据库系统充分利用硬件基础设施。最近持久内存 (PM) 和可编程网络的商品化正在改变本地和云基础设施。它们带来了许多优化数据库系统的机会,但也使许多先前的设计和假设失效。现有设计尚未准备好,将导致次优结果。该研究计划通过以下三个模块探索在 PM 和可编程网络背景下构建下一代数据库系统的关键原则。
1.持久内存数据库系统:PM填补了主内存和存储之间的空白,因此有可能实现“理想”的数据库系统,该系统可以快速提交事务,立即恢复,并且与当今的主内存数据库一样快地执行,但成本更低。现有的工作通常必须牺牲其中一些功能来换取性能。这项研究利用 PM(例如 NVDIMM、Intel Optane)的多样性来实现上述所需的功能,而无需权衡。
2.数据库-网络-PM协同设计:未来的服务器将配备大量的PM并通过可编程网络互连。这种组合为应用程序提供了通过 PM 立即持久性将操作卸载到网络的机会,从而释放宝贵的 CPU 核心来执行更有用的工作。需要协调一致地共同设计网络中的组件、使用 PM 和数据库系统组件才能充分发挥此类硬件的优势,这也是本研究的目标。
3. 用于编程PM和快速网络的高效可靠的工具:数据库系统的制作依赖于适合持久存储器和未来可编程网络的工具。但现有工具在数据完整性、可靠性和可编程性方面存在缺陷。在PM和可编程网络得到广泛采用之前,必须解决这些问题。本研究重点关注此类问题,最终目标是创建和维护随未来 PM 和可编程网络技术一起发展的框架和工具。
影响:随着最近的商品化,PM 和可编程网络可能会成为数据密集型应用程序标准基础设施的一部分。该研究计划对于数据库系统和工具随着硬件的进步而继续发展是必要的。它将增强加拿大在相关领域的优势,并使依赖数据库系统的应用程序受益,例如数据挖掘、机器学习和可视化,以及高性能且低成本的解决方案。它将通过培训学术界和工业界急需的高素质人才(包括女学生和代表性不足的群体)来为加拿大经济做出贡献。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wang, Tianzheng其他文献
A zeolitic imidazolate framework-8-based indocyanine green theranostic agent for infrared fluorescence imaging and photothermal therapy
一种基于咪唑骨架8的沸石吲哚菁绿治疗诊断剂,用于红外荧光成像和光热治疗
- DOI:
10.1039/c8tb00351c - 发表时间:
2018-06-21 - 期刊:
- 影响因子:7
- 作者:
Wang, Tianzheng;Li, Siqi;Wang, Kemin - 通讯作者:
Wang, Kemin
Wang, Tianzheng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wang, Tianzheng', 18)}}的其他基金
Next-Generation Data Management Systems and Software Tools
下一代数据管理系统和软件工具
- 批准号:
RGPIN-2019-04620 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Next-Generation Data Management Systems and Software Tools
下一代数据管理系统和软件工具
- 批准号:
RGPIN-2019-04620 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Next-Generation Data Management Systems and Software Tools
下一代数据管理系统和软件工具
- 批准号:
DGECR-2019-00442 - 财政年份:2019
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Launch Supplement
Next-Generation Data Management Systems and Software Tools
下一代数据管理系统和软件工具
- 批准号:
RGPIN-2019-04620 - 财政年份:2019
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Next Generation Majorana Nanowire Hybrids
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
相似海外基金
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
- 批准号:
2325311 - 财政年份:2024
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
CAREER: Next-Generation Methods for Statistical Integration of High-Dimensional Disparate Data Sources
职业:高维不同数据源统计集成的下一代方法
- 批准号:
2422478 - 财政年份:2024
- 资助金额:
$ 2.4万 - 项目类别:
Continuing Grant
Next Generation Tools For Genome-Centric Multimodal Data Integration In Personalised Cardiovascular Medicine
个性化心血管医学中以基因组为中心的多模式数据集成的下一代工具
- 批准号:
10104323 - 财政年份:2024
- 资助金额:
$ 2.4万 - 项目类别:
EU-Funded
NEXT GENERATION TOOLS FOR GENOME-CENTRIC MULTIMODAL DATA INTEGRATION IN PERSONALISED CARDIOVASCULAR MEDICINE
用于个性化心血管医学中以基因组为中心的多模式数据集成的下一代工具
- 批准号:
10098097 - 财政年份:2024
- 资助金额:
$ 2.4万 - 项目类别:
EU-Funded
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
- 批准号:
2325312 - 财政年份:2024
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
Next generation forest dynamics modelling using remote sensing data
使用遥感数据的下一代森林动力学建模
- 批准号:
MR/Y033981/1 - 财政年份:2024
- 资助金额:
$ 2.4万 - 项目类别:
Fellowship
Empowering Next-Generation Spatial Digital Twins with Linked Spatial Data
利用链接的空间数据赋能下一代空间数字孪生
- 批准号:
DP240101006 - 财政年份:2024
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Projects
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
- 批准号:
2325310 - 财政年份:2024
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
Archer: Next-generation unstructured data access for hospitals and clinical trial sponsors, delivering efficiency, reducing costs and improving care
Archer:为医院和临床试验申办者提供下一代非结构化数据访问,提高效率、降低成本并改善护理
- 批准号:
10096804 - 财政年份:2024
- 资助金额:
$ 2.4万 - 项目类别:
Collaborative R&D
Data-driven design of Next Generation Cross-Coupling catalysts by Ligand Parameterisation: A Combined Experimental and Computational Approach.
通过配体参数化进行下一代交叉偶联催化剂的数据驱动设计:实验和计算相结合的方法。
- 批准号:
2896325 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Studentship














{{item.name}}会员




