Next-Generation Data Management Systems and Software Tools

下一代数据管理系统和软件工具

基本信息

  • 批准号:
    RGPIN-2019-04620
  • 负责人:
  • 金额:
    $ 2.4万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Modern data-intensive applications, such as machine learning and data mining, fundamentally depend on database systems to meet their performance, functionality and reliability requirements. This puts pressing needs on database systems to best utilize the hardware infrastructure. The recent commoditization of persistent memory (PM) and programmable networks is transforming both on-premise and cloud infrastructure. They bring many opportunities to optimize database systems, but also invalidate many prior designs and assumptions. Existing designs are not ready and will lead to sub-optimal results. This research program explores key principles for building next-generation database systems in the context of PM and programmable networks through the following three modules. 1. Persistent Memory Database System: PM fills the gap between main memory and storage, thus has the potential of enabling an "ideal" database system that commits transactions fast, recovers instantly, and performs as fast as today's main-memory databases but at a lower cost. Existing work often has to trade off some of these features for performance. This research leverages the diversity of PM (e.g., NVDIMMs, Intel Optane) to realize the aforementioned desirable functionality without tradeoffs. 2. Database-Network-PM Co-design: Future servers will be equipped with large amounts of PM and interconnected by programmable networks. This combination opens up opportunities for applications to offload operations to the network with immediate persistence by PM, freeing up precious CPU cores for more useful work. It requires a coordinated effort to co-design components in the network, use of PM and database system components to reap the full benefits of such hardware, which is the objective of this research. 3. Efficient and Reliable Tools for Programming PM and Fast Networks: The making of database systems relies on tools suitable for persistent memory and future programmable networks. But existing tools fall short on data integrity, reliability and programmability. These problems must be solved before PM and programmable networks can be widely adopted. This research focuses on such issues, with a final goal of creating and maintaining a framework and tools that evolve with future PM and programmable network technologies. Impact: With the recent commoditization, PM and programmable networks will likely become part of the standard infrastructure for data-intensive applications. This research program is necessary for database systems and tools to continue to evolve with hardware advances. It will enhance Canada's strengths in related areas and benefit applications that rely on database systems, e.g., data mining, machine learning and visualization, with high-performance yet low-cost solutions. It will contribute to Canadian economy by training highly qualified personnel (including female students and under-represented groups) whose expertise are in high demand in academia and industry.
现代数据密集型应用程序,如机器学习和数据挖掘,从根本上依赖于数据库系统来满足其性能,功能和可靠性要求。这就迫切需要数据库系统最好地利用硬件基础设施。最近持久性内存(PM)和可编程网络的商品化正在改变内部部署和云基础设施。它们带来了许多优化数据库系统的机会,但也使许多先前的设计和假设失效。现有的设计还没有准备好,将导致次优的结果。该研究计划通过以下三个模块探索在PM和可编程网络的背景下构建下一代数据库系统的关键原则。1.持久内存数据库系统:PM填补了主存和存储之间的差距,因此有可能实现一个“理想”的数据库系统,该系统可以快速提交事务,即时恢复,并以较低的成本与今天的主存数据库一样快地执行。现有的工作往往不得不权衡这些功能的性能。这项研究利用了PM的多样性(例如,NVDIXTM,Intel Optane)来实现上述期望的功能而没有折衷。2.数据库-网络-PM协同设计:未来的服务器将配备大量PM,并通过可编程网络互连。这种组合为应用程序提供了机会,可以通过PM立即持久化将操作卸载到网络,从而释放宝贵的CPU核心以进行更有用的工作。它需要一个协调的努力,共同设计的组件在网络中,使用PM和数据库系统组件,以获得这种硬件的全部好处,这是本研究的目标。3.高效可靠的PM和快速网络编程工具:数据库系统的开发依赖于适用于持久内存和未来可编程网络的工具。但现有的工具在数据完整性、可靠性和可编程性方面存在不足。这些问题必须得到解决,PM和可编程网络才能被广泛采用。这项研究的重点是这些问题,最终目标是创建和维护一个框架和工具,随着未来的PM和可编程网络技术的发展。影响:随着最近的商品化,PM和可编程网络可能会成为数据密集型应用程序的标准基础设施的一部分。这项研究计划是必要的数据库系统和工具,以继续发展与硬件的进步。它将增强加拿大在相关领域的优势,并使依赖数据库系统的应用程序受益,例如,数据挖掘、机器学习和可视化,以及高性能、低成本的解决方案。它将通过培训学术界和工业界高度需要的高素质人才(包括女学生和代表性不足的群体),为加拿大经济做出贡献。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wang, Tianzheng其他文献

A zeolitic imidazolate framework-8-based indocyanine green theranostic agent for infrared fluorescence imaging and photothermal therapy
一种基于咪唑骨架8的沸石吲哚菁绿治疗诊断剂,用于红外荧光成像和光热治疗
  • DOI:
    10.1039/c8tb00351c
  • 发表时间:
    2018-06-21
  • 期刊:
  • 影响因子:
    7
  • 作者:
    Wang, Tianzheng;Li, Siqi;Wang, Kemin
  • 通讯作者:
    Wang, Kemin

Wang, Tianzheng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wang, Tianzheng', 18)}}的其他基金

Next-Generation Data Management Systems and Software Tools
下一代数据管理系统和软件工具
  • 批准号:
    RGPIN-2019-04620
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Next-Generation Data Management Systems and Software Tools
下一代数据管理系统和软件工具
  • 批准号:
    RGPIN-2019-04620
  • 财政年份:
    2020
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Next-Generation Data Management Systems and Software Tools
下一代数据管理系统和软件工具
  • 批准号:
    DGECR-2019-00442
  • 财政年份:
    2019
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Launch Supplement
Next-Generation Data Management Systems and Software Tools
下一代数据管理系统和软件工具
  • 批准号:
    RGPIN-2019-04620
  • 财政年份:
    2019
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Next Generation Majorana Nanowire Hybrids
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    20 万元
  • 项目类别:

相似海外基金

Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
  • 批准号:
    2325311
  • 财政年份:
    2024
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Standard Grant
CAREER: Next-Generation Methods for Statistical Integration of High-Dimensional Disparate Data Sources
职业:高维不同数据源统计集成的下一代方法
  • 批准号:
    2422478
  • 财政年份:
    2024
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Continuing Grant
Next Generation Tools For Genome-Centric Multimodal Data Integration In Personalised Cardiovascular Medicine
个性化心血管医学中以基因组为中心的多模式数据集成的下一代工具
  • 批准号:
    10104323
  • 财政年份:
    2024
  • 资助金额:
    $ 2.4万
  • 项目类别:
    EU-Funded
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
  • 批准号:
    2325312
  • 财政年份:
    2024
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Standard Grant
NEXT GENERATION TOOLS FOR GENOME-CENTRIC MULTIMODAL DATA INTEGRATION IN PERSONALISED CARDIOVASCULAR MEDICINE
用于个性化心血管医学中以基因组为中心的多模式数据集成的下一代工具
  • 批准号:
    10098097
  • 财政年份:
    2024
  • 资助金额:
    $ 2.4万
  • 项目类别:
    EU-Funded
Empowering Next-Generation Spatial Digital Twins with Linked Spatial Data
利用链接的空间数据赋能下一代空间数字孪生
  • 批准号:
    DP240101006
  • 财政年份:
    2024
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Projects
Next generation forest dynamics modelling using remote sensing data
使用遥感数据的下一代森林动力学建模
  • 批准号:
    MR/Y033981/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Fellowship
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
  • 批准号:
    2325310
  • 财政年份:
    2024
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Standard Grant
Archer: Next-generation unstructured data access for hospitals and clinical trial sponsors, delivering efficiency, reducing costs and improving care
Archer:为医院和临床试验申办者提供下一代非结构化数据访问,提高效率、降低成本并改善护理
  • 批准号:
    10096804
  • 财政年份:
    2024
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Collaborative R&D
Data-driven design of Next Generation Cross-Coupling catalysts by Ligand Parameterisation: A Combined Experimental and Computational Approach.
通过配体参数化进行下一代交叉偶联催化剂的数据驱动设计:实验和计算相结合的方法。
  • 批准号:
    2896325
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了