Novel structured materials and rapid prototyping techniques for research into advanced mux/demux modalities and enabling component manufacturing for the upcoming ultra-fast terahertz wireless communications

新型结构材料和快速原型技术,用于研究先进的复用/解复用模式,并为即将到来的超快太赫兹无线通信提供组件制造

基本信息

  • 批准号:
    RGPIN-2019-04750
  • 负责人:
  • 金额:
    $ 4.01万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

The internet data traffic is continuing its exponential increase and is expected to reach 278 Exabytes/month by 2021. Similarly, the ever-increasing wireless communications data rate in the commercial markets is expected to be 100 Gbps by 2024. To meet the bandwidth demand, a shift towards higher carrier frequencies is unavoidable. The THz band (frequency:100 GHz-10 THz, wavelength:3 mm-30 µm) is seen by many as the next frontier in wireless communications. Over the past decade, significant research in components for THz communications resulted in a fair number of single-channel THz wireless system demonstrators. The next frontier in THz communication system design is the development of various multiplexing /demultiplexing modalities, enabling components and fabrication techniques that would allow further increase of the link capacity via simultaneous transmission of multiple THz data streams. The proposed research program aims at development of the nano- and micro-structured optical materials as well as advanced 2D/3D device fabrications techniques to demonstrate novel THz components for future THz communication systems. The key functionality of such components is to enable high degree of multiplexing of the multiple data streams in the same data link. We will focus on the fundamental aspects of material science and optical component design/manufacturing by exploring novel transformative concepts of artificial materials (metamaterials) and rapid prototyping techniques (3d printing, etc.) to revolutionize how the THz components for future communication systems are manufactured. Examples of the novel device concepts that will be studied within this proposal include: highly frequency dispersive metamaterials using polaritonic materials for WDM components plasmonic ultra-high refractive index metamaterials for integrated THz photonics highly porous, while optically dense low-loss metamaterials for SDM and MDM devices novel strategies for 3D micro-structured THz material fabrication novel strategies for rapid THz component fabrication and dense 3D integration In short, we propose to unlock new capabilities and explore new designs for high performance communication devices and systems by going 3D using state-of-the-art computer controlled additive and subtractive manufacturing techniques in combination with novel functional artificial materials based on dielectric, plasmonic and polaritonic materials. With this new paradigm, we aim at higher performance characteristics, more efficient and robust manufacturing, and novel operational principles. Additionally, we expect that achievement of results within this proposal will have importance to a broad range of applications, including microwave engineering, THz imaging, and novel fabrication techniques for E&M devices. Finally, a significant number of HQPs (5 BScs, 2 MScs, 2 PhDs, 1 PDF) will be trained during the course of the proposal in the burgeoning field of ultra-fast communications.
互联网数据流量正在持续指数增长,预计到2021年,每月将达到278个exabytes。同样,商业市场中不断增加的无线通信数据速率预计到2024年将为100 Gbps。为了满足Bandwidth的需求,朝着更高的载流子频率转移了。 THZ频段(频率:100 GHz-10 THz,波长:3 mm-330 µm)被许多人视为无线通信中的下一个前沿。在过去的十年中,对THZ通信组件的重大研究导致了相当多的单渠道THZ无线系统演示器。 THZ通信系统设计中的下一个前沿设计是开发各种多路复用 /反复的模式,使组件和制造技术能够通过同时传输多个THZ数据流,从而可以进一步增加链路容量。 拟议的研究计划旨在开发纳米和微型结构的光学材料以及高级的2D/3D设备制造技术,以展示用于未来THZ通信系统的新型THZ组件。这种组件的关键功能是在同一数据链接中启用多个数据流的高度多路复用。我们将通过探索人造材料的新型变革概念(超材料)和快速原型制作技术(3D打印等)来彻底改变未来通信系统的THZ组件的制造方式,从而关注材料科学和光学组件设计/制造的基本方面。 该提案中将研究的新型设备概念的示例包括: 使用极化材料的WDM组件的高频率分散式超材料 综合THZ光子学的等离子超高折射率超材料 高度多孔,而SDM和MDM设备的光学致密低损耗超材料 3D微型THZ材料制造的新型策略 快速THZ组件制造和致密3D整合的新型策略 简而言之,我们建议通过使用最先进的计算机控制的添加剂和减法制造技术与基于顽固的等离子,等离子和极化材料的新型功能性人工材料结合使用最先进的添加剂和减法制造技术来解锁新功能并探索高性能通信设备和系统的新设计。有了这个新的范式,我们旨在提高性能特征,更高效,更健壮的制造以及新颖的运营原理。此外,我们预计该提案中的结果将对广泛的应用程序具有重要意义,包括微波工程,THZ成像和E&M设备的新型制造技术。 最后,将在提案的过程中培训大量的HQP(5个BSC,2个MSC,2个PHD,1 PDF)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Skorobogatiy, Maksim其他文献

Polymer microstructured optical fibers for terahertz wave guiding
  • DOI:
    10.1364/oe.19.00b848
  • 发表时间:
    2011-12-12
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Ung, Bora;Mazhorova, Anna;Skorobogatiy, Maksim
  • 通讯作者:
    Skorobogatiy, Maksim
Transmission measurements of hollow-core THz Bragg fibers
Super-Resolution Orthogonal Deterministic Imaging Technique for Terahertz Subwavelength Microscopy
  • DOI:
    10.1021/acsphotonics.0c00711
  • 发表时间:
    2020-07-15
  • 期刊:
  • 影响因子:
    7
  • 作者:
    Guerboukha, Hichem;Cao, Yang;Skorobogatiy, Maksim
  • 通讯作者:
    Skorobogatiy, Maksim
Exploiting k-space/frequency duality toward real-time terahertz imaging
  • DOI:
    10.1364/optica.5.000109
  • 发表时间:
    2018-02-20
  • 期刊:
  • 影响因子:
    10.4
  • 作者:
    Guerboukha, Hichem;Nallappan, Kathirvel;Skorobogatiy, Maksim
  • 通讯作者:
    Skorobogatiy, Maksim
Photon crystal waveguide-based surface plasmon resonance biosensor
  • DOI:
    10.1063/1.2360186
  • 发表时间:
    2006-10-02
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Skorobogatiy, Maksim;Kabashin, Andrei V.
  • 通讯作者:
    Kabashin, Andrei V.

Skorobogatiy, Maksim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Skorobogatiy, Maksim', 18)}}的其他基金

Novel structured materials and rapid prototyping techniques for research into advanced mux/demux modalities and enabling component manufacturing for the upcoming ultra-fast terahertz wireless communications
新型结构材料和快速原型技术,用于研究先进的复用/解复用模式,并为即将到来的超快太赫兹无线通信提供组件制造
  • 批准号:
    RGPIN-2019-04750
  • 财政年份:
    2022
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Discovery Grants Program - Individual
Ubiquitous Terahertz Photonics: enabling technology for the future imaging systems and wireless communications
无处不在的太赫兹光子学:未来成像系统和无线通信的支持技术
  • 批准号:
    CRC-2015-00182
  • 财政年份:
    2022
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Canada Research Chairs
Lab2Market Assesment: Mobile & Cozy - an all-textile heating-assisted therapy platform for sufferers of chronic pain
Lab2Market 评估:移动
  • 批准号:
    571236-2022
  • 财政年份:
    2021
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Idea to Innovation
Novel structured materials and rapid prototyping techniques for research into advanced mux/demux modalities and enabling component manufacturing for the upcoming ultra-fast terahertz wireless communications
新型结构材料和快速原型技术,用于研究先进的复用/解复用模式,并为即将到来的超快太赫兹无线通信提供组件制造
  • 批准号:
    RGPIN-2019-04750
  • 财政年份:
    2021
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Discovery Grants Program - Individual
Novel structured materials and rapid prototyping techniques for research into advanced mux/demux modalities and enabling component manufacturing for the upcoming ultra-fast terahertz wireless communications
新型结构材料和快速原型技术,用于研究先进的复用/解复用模式,并为即将到来的超快太赫兹无线通信提供组件制造
  • 批准号:
    DGDND-2019-04750
  • 财政年份:
    2021
  • 资助金额:
    $ 4.01万
  • 项目类别:
    DND/NSERC Discovery Grant Supplement
Ubiquitous Terahertz Photonics: Enabling Technology For The Future Imaging Systems And Wireless Communications
无处不在的太赫兹光子学:未来成像系统和无线通信的支持技术
  • 批准号:
    CRC-2015-00182
  • 财政年份:
    2021
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Canada Research Chairs
Replacement of the femtosecond laser in the THz spectroscopic microscopy laboratory
太赫兹光谱显微镜实验室中飞秒激光器的更换
  • 批准号:
    RTI-2022-00342
  • 财政年份:
    2021
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Research Tools and Instruments
Novel structured materials and rapid prototyping techniques for research into advanced mux/demux modalities and enabling component manufacturing for the upcoming ultra-fast terahertz wireless communications
新型结构材料和快速原型技术,用于研究先进的复用/解复用模式,并为即将到来的超快太赫兹无线通信提供组件制造
  • 批准号:
    DGDND-2019-04750
  • 财政年份:
    2020
  • 资助金额:
    $ 4.01万
  • 项目类别:
    DND/NSERC Discovery Grant Supplement
Ubiquitous Terahertz Photonics: enabling technology for the future imaging systems and wireless communications
无处不在的太赫兹光子学:未来成像系统和无线通信的支持技术
  • 批准号:
    1000230816-2015
  • 财政年份:
    2020
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Canada Research Chairs
Ubiquitous Terahertz Photonics: enabling technology for the future imaging systems and wireless communications
无处不在的太赫兹光子学:未来成像系统和无线通信的支持技术
  • 批准号:
    1000230816-2015
  • 财政年份:
    2019
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Canada Research Chairs

相似国自然基金

二维氮化钼/磷化钼面内异质结构催化材料的设计合成及大电流密度析氢性能研究
  • 批准号:
    22379116
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
空间环境用碳纤维复合材料结构健康监测与可控自愈合研究
  • 批准号:
    12372134
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
增强型负热膨胀材料设计与轻质零热膨胀铝基复合材料的制备及界面结构研究
  • 批准号:
    12374032
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
硬硅钙石、磷灰石基复合材料中富镁非晶间质相结构构建与强韧化机制研究
  • 批准号:
    52302095
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
聚酰亚胺纤维纸基材料分级结构设计及高温气体过滤机制研究
  • 批准号:
    22378248
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Novel structured materials and rapid prototyping techniques for research into advanced mux/demux modalities and enabling component manufacturing for the upcoming ultra-fast terahertz wireless communications
新型结构材料和快速原型技术,用于研究先进的复用/解复用模式,并为即将到来的超快太赫兹无线通信提供组件制造
  • 批准号:
    RGPIN-2019-04750
  • 财政年份:
    2022
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Discovery Grants Program - Individual
Novel structured materials and rapid prototyping techniques for research into advanced mux/demux modalities and enabling component manufacturing for the upcoming ultra-fast terahertz wireless communications
新型结构材料和快速原型技术,用于研究先进的复用/解复用模式,并为即将到来的超快太赫兹无线通信提供组件制造
  • 批准号:
    RGPIN-2019-04750
  • 财政年份:
    2021
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Discovery Grants Program - Individual
Novel structured materials and rapid prototyping techniques for research into advanced mux/demux modalities and enabling component manufacturing for the upcoming ultra-fast terahertz wireless communications
新型结构材料和快速原型技术,用于研究先进的复用/解复用模式,并为即将到来的超快太赫兹无线通信提供组件制造
  • 批准号:
    DGDND-2019-04750
  • 财政年份:
    2021
  • 资助金额:
    $ 4.01万
  • 项目类别:
    DND/NSERC Discovery Grant Supplement
Novel structured materials and rapid prototyping techniques for research into advanced mux/demux modalities and enabling component manufacturing for the upcoming ultra-fast terahertz wireless communications
新型结构材料和快速原型技术,用于研究先进的复用/解复用模式,并为即将到来的超快太赫兹无线通信提供组件制造
  • 批准号:
    DGDND-2019-04750
  • 财政年份:
    2020
  • 资助金额:
    $ 4.01万
  • 项目类别:
    DND/NSERC Discovery Grant Supplement
Reproducible, Unbiased Ligand Identification Assisted by Artificial Intelligence and Development of Ligand Reference Libraries
人工智能辅助的可重复、公正的配体鉴定和配体参考文库的开发
  • 批准号:
    10019572
  • 财政年份:
    2019
  • 资助金额:
    $ 4.01万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了