Motion Estimation and Classification in Medical Image Analysis
医学图像分析中的运动估计和分类
基本信息
- 批准号:RGPIN-2019-05498
- 负责人:
- 金额:$ 1.75万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Accurate motion estimation and classification is crucial in many medical imaging applications as it serves as the basis for the diagnosis and treatment option. Most computer vision and image processing approaches overlook the motion estimation aspect of temporal data, and they primarily focused on independently analyzing the images in a sequence. This leads to significant problems in adapting these methodologies to practical problems as the lack of temporal consistency render these methods ineffective for many real-life applications. Although integration of prior knowledge has been shown to significantly improve the motion estimation accuracy in radar signal processing, their application has not been studied well for medical imaging. Additionally, the mathematical models derived in radar signal processing for estimating the motions of objects such as aircraft deviate significantly from the tissue motions arising in medical imaging applications. New models have to be derived using fundamental principles to characterize movements that occur in medical imaging applications accurately. Recently, several deep convolutional neural network-based machine learning algorithms have been proposed to address the medical image segmentation problem. However, these methods do not provide an option to achieve temporally consistent segmentation. Additionally, these methods often require a significant amount of training data. Over the next five years, I plan to continue working on the exciting area of analyzing temporal medical image sequences and intend to develop novel solutions to motion estimation and classification problems.
The overall aim of the proposed research program is to develop novel, automated, and efficient (realtime) algorithms for the estimation and classification of tissue motion from medical image scans. Specific objectives include:
i) Theoretical objectives: Novel tracking approaches that are applicable under more general circumstances will be developed. Additionally, advanced classification approaches will be developed to discriminate between different types of tissue or object motions. Such developments will include automated classification of normal, hypokinetic, akinetic and dyskinetic motions in regional cardiac function. The overall purpose is to develop algorithms that can identify subtle differences in motion patterns thereby allowing computer-assisted diagnosis algorithms to detect abnormalities as early as possible.
ii) Practical objectives: In practice, I plan to develop mathematical models to characterize tissue motion for essential and challenging problems, e.g., estimating and classifying motion patterns for the cardiac left ventricle.
The proposed research program intends to train students and produce young scientists with unique expertise in machine learning and image processing to enable them to be world-class experts in the fields of computer vision and medical image analysis.
准确的运动估计和分类在许多医学成像应用中是至关重要的,因为它是诊断和治疗选项的基础。大多数计算机视觉和图像处理方法忽略了时间数据的运动估计方面,并且它们主要集中在独立地分析序列中的图像。这导致了重大的问题,在适应这些方法的实际问题,因为缺乏时间的一致性,使这些方法对许多现实生活中的应用无效。虽然先验知识的整合已被证明可以显着提高运动估计精度在雷达信号处理,他们的应用还没有研究好医学成像。另外,在雷达信号处理中导出的用于估计诸如飞行器的物体的运动的数学模型显著地偏离在医学成像应用中出现的组织运动。必须使用基本原理导出新模型,以准确地表征医学成像应用中发生的运动。最近,已经提出了几种基于深度卷积神经网络的机器学习算法来解决医学图像分割问题。然而,这些方法不提供实现时间一致的分割的选项。此外,这些方法通常需要大量的训练数据。 在接下来的五年里,我计划继续致力于分析时间医学图像序列这一令人兴奋的领域,并打算为运动估计和分类问题开发新的解决方案。
拟议的研究计划的总体目标是开发新的,自动化的,有效的(实时)算法的估计和分类的组织运动从医学图像扫描。具体目标包括:
理论目标:将开发适用于更一般情况的新的跟踪方法。此外,将开发先进的分类方法,以区分不同类型的组织或对象运动。这种发展将包括自动分类的正常,运动功能减退,运动不能和运动障碍的运动在区域心脏功能。总体目的是开发能够识别运动模式中的细微差异的算法,从而允许计算机辅助诊断算法尽早检测异常。
(二)实际目标:在实践中,我计划开发数学模型来描述组织运动的基本和具有挑战性的问题,例如,估计和分类心脏左心室的运动模式。
拟议的研究计划旨在培养学生,并培养在机器学习和图像处理方面具有独特专业知识的年轻科学家,使他们成为计算机视觉和医学图像分析领域的世界级专家。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Punithakumar, Kumaradevan其他文献
Right ventricular segmentation in cardiac MRI with moving mesh correspondences
- DOI:
10.1016/j.compmedimag.2015.01.004 - 发表时间:
2015-07-01 - 期刊:
- 影响因子:5.7
- 作者:
Punithakumar, Kumaradevan;Noga, Michelle;Boulanger, Pierre - 通讯作者:
Boulanger, Pierre
Regional heart motion abnormality detection: An information theoretic approach
- DOI:
10.1016/j.media.2012.11.007 - 发表时间:
2013-04-01 - 期刊:
- 影响因子:10.9
- 作者:
Punithakumar, Kumaradevan;Ben Ayed, Ismail;Li, Shuo - 通讯作者:
Li, Shuo
Accuracy of magnetic resonance imaging-cone beam computed tomography rigid registration of the head: an in-vitro study
- DOI:
10.1016/j.oooo.2015.10.029 - 发表时间:
2016-03-01 - 期刊:
- 影响因子:2.9
- 作者:
Al-Saleh, Mohammed A. Q.;Punithakumar, Kumaradevan;Major, Paul W. - 通讯作者:
Major, Paul W.
3D Motion Estimation of Left Ventricular Dynamics Using MRI and Track-to-Track Fusion
- DOI:
10.1109/jtehm.2020.2989390 - 发表时间:
2020-01-01 - 期刊:
- 影响因子:3.4
- 作者:
Punithakumar, Kumaradevan;Ben Ayed, Ismail;Noga, Michelle - 通讯作者:
Noga, Michelle
Distribution Matching with the Bhattacharyya Similarity: A Bound Optimization Framework
- DOI:
10.1109/tpami.2014.2382104 - 发表时间:
2015-09-01 - 期刊:
- 影响因子:23.6
- 作者:
Ben Ayed, Ismail;Punithakumar, Kumaradevan;Li, Shuo - 通讯作者:
Li, Shuo
Punithakumar, Kumaradevan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Punithakumar, Kumaradevan', 18)}}的其他基金
Motion Estimation and Classification in Medical Image Analysis
医学图像分析中的运动估计和分类
- 批准号:
RGPIN-2019-05498 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Motion Estimation and Classification in Medical Image Analysis
医学图像分析中的运动估计和分类
- 批准号:
RGPIN-2019-05498 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Automated Frame-by-Frame Assessment of Lung Ultrasound Imaging in Severe COVID-19 Patients Using Machine Learning
使用机器学习对重症 COVID-19 患者的肺部超声成像进行自动逐帧评估
- 批准号:
550470-2020 - 财政年份:2020
- 资助金额:
$ 1.75万 - 项目类别:
Alliance Grants
Motion Estimation and Classification in Medical Image Analysis
医学图像分析中的运动估计和分类
- 批准号:
RGPIN-2019-05498 - 财政年份:2019
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Motion Estimation and Classification in Medical Image Analysis
医学图像分析中的运动估计和分类
- 批准号:
DGECR-2019-00348 - 财政年份:2019
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Launch Supplement
Bayesian modeling in medical imaging
医学成像中的贝叶斯建模
- 批准号:
372300-2008 - 财政年份:2010
- 资助金额:
$ 1.75万 - 项目类别:
Industrial Research Fellowships
Bayesian modeling in medical imaging
医学成像中的贝叶斯建模
- 批准号:
372300-2008 - 财政年份:2009
- 资助金额:
$ 1.75万 - 项目类别:
Industrial Research Fellowships
Bayesian modeling in medical imaging
医学成像中的贝叶斯建模
- 批准号:
372300-2008 - 财政年份:2008
- 资助金额:
$ 1.75万 - 项目类别:
Industrial Research Fellowships
相似海外基金
IMR: MM-1C: Enabling Continual Passive Estimation of Performance of Internet Transfers: Online Measurement and Classification Methods
IMR:MM-1C:实现互联网传输性能的持续被动估计:在线测量和分类方法
- 批准号:
2319511 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Standard Grant
Motion Estimation and Classification in Medical Image Analysis
医学图像分析中的运动估计和分类
- 批准号:
RGPIN-2019-05498 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Motion Estimation and Classification in Medical Image Analysis
医学图像分析中的运动估计和分类
- 批准号:
RGPIN-2019-05498 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
A Stratigraphic Classification Estimation Method by Neural Networks for Geotechnical Information with bias and its Precision Evaluation
带偏差岩土信息的神经网络地层分类估计方法及其精度评价
- 批准号:
20K04691 - 财政年份:2020
- 资助金额:
$ 1.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Transport transforms for biomedical data modeling, estimation, and classification
用于生物医学数据建模、估计和分类的传输转换
- 批准号:
10672626 - 财政年份:2019
- 资助金额:
$ 1.75万 - 项目类别:
Motion Estimation and Classification in Medical Image Analysis
医学图像分析中的运动估计和分类
- 批准号:
RGPIN-2019-05498 - 财政年份:2019
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Estimation of Stroke Risk based on Shape Classification of Retinal Vein by Using Self-Organizing Map
基于自组织映射的视网膜静脉形状分类的中风风险估计
- 批准号:
19K20356 - 财政年份:2019
- 资助金额:
$ 1.75万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Motion Estimation and Classification in Medical Image Analysis
医学图像分析中的运动估计和分类
- 批准号:
DGECR-2019-00348 - 财政年份:2019
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Launch Supplement
Classification process for medical data combined with order information and text information in hospital information system for estimation of patient background
医院信息系统中医疗数据结合订单信息和文本信息进行患者背景估计的分类过程
- 批准号:
16K09172 - 财政年份:2016
- 资助金额:
$ 1.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
RUI: Classification, regression, and density estimation with missing variables
RUI:分类、回归和缺失变量的密度估计
- 批准号:
1407400 - 财政年份:2014
- 资助金额:
$ 1.75万 - 项目类别:
Continuing Grant