Transport transforms for biomedical data modeling, estimation, and classification

用于生物医学数据建模、估计和分类的传输转换

基本信息

  • 批准号:
    10672626
  • 负责人:
  • 金额:
    $ 35.51万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-03-01 至 2027-06-30
  • 项目状态:
    未结题

项目摘要

The goal of the project is to develop a new mathematical and computational modeling framework for from biomedical data extracted from biomedical experiments such as voltages, spectra (e.g. mass, magnetic resonance, impedance, optical absorption, …), microscopy or radiology images, gene expression, and many others. Scientists who are looking to understand relationships between different molecular and cellular measurements are often faced with questions involving deciphering differences between different cell or organ measurements. Current approaches (e.g. feature engineering and classification, end-to-end neural networks) are often viewed as “black boxes,” given their lack of connection to any biological mechanistic effects. The approach we propose builds from the “ground up” an entirely new modeling framework build based on recently developed invertible transformation. As such, it allows for any machine learning model to be represented in original data space, allowing for not only increased accuracy in prediction, but also direct visualization and interpretation. As an outcome of the previous funding period, our current approach outperforms other mathematical modeling tools when processing segmented signals and images by a wide margin in terms of accuracy, computational complexity, amount of training data needed, interpretability and robustness to out of distribution samples. In this current phase we seek to generalize the method beyond segmented images and signals to virtually any dataset type. We will explore proof of concept applications in cytometry, pathology, and radiomics.
该项目的目标是开发一种新的数学和计算方法

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Neural Networks, Hypersurfaces, and the Generalized Radon Transform.
神经网络、超曲面和广义氡变换。
  • DOI:
    10.1109/msp.2020.2978822
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    14.9
  • 作者:
    Kolouri,Soheil;Yin,Xuwang;Rohde,GustavoK
  • 通讯作者:
    Rohde,GustavoK
Data-driven Identification of Parametric Governing Equations of Dynamical Systems Using the Signed Cumulative Distribution Transform.
  • DOI:
    10.1016/j.cma.2024.116822
  • 发表时间:
    2023-08
  • 期刊:
  • 影响因子:
    7.2
  • 作者:
    A. Rubaiyat;D. H. Thai;J. Nichols;M. Hutchinson;S. Wallen;Christina J. Naify;Nathan Geib;M. Haberman;G. Rohde
  • 通讯作者:
    A. Rubaiyat;D. H. Thai;J. Nichols;M. Hutchinson;S. Wallen;Christina J. Naify;Nathan Geib;M. Haberman;G. Rohde
Predicting Malignancy of Breast Imaging Findings Using Quantitative Analysis of Contrast-Enhanced Mammography (CEM).
  • DOI:
    10.3390/diagnostics13061129
  • 发表时间:
    2023-03-16
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Miller, Matthew M.;Rubaiyat, Abu Hasnat Mohammad;Rohde, Gustavo K.
  • 通讯作者:
    Rohde, Gustavo K.
Real‐time intelligent classification of COVID‐19 and thrombosis via massive image‐based analysis of platelet aggregates
通过基于大规模图像的血小板聚集体分析对 COVID-19 和血栓形成进行实时智能分类
  • DOI:
    10.1002/cyto.a.24721
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Zhang Chenqi;Herbig Maik;Zhou Yuqi;Nishikawa Masako;Shifat‐E‐Rabbi Mohammad;Kanno Hiroshi;Yang Ruoxi;Ibayashi Yuma;Xiao Ting‐Hui;Rohde Gustavo K.;Sato Masataka;Kodera Satoshi;Daimon Masao;Yatomi Yutaka;Goda Keisuke
  • 通讯作者:
    Goda Keisuke
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gustavo Kunde Rohde其他文献

Gustavo Kunde Rohde的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gustavo Kunde Rohde', 18)}}的其他基金

High-Content Imaging & Analysis Core
高内涵成像
  • 批准号:
    10703488
  • 财政年份:
    2022
  • 资助金额:
    $ 35.51万
  • 项目类别:
High-Content Imaging & Analysis Core
高内涵成像
  • 批准号:
    10525286
  • 财政年份:
    2022
  • 资助金额:
    $ 35.51万
  • 项目类别:
Lagrangian computational modeling for biomedical data science
生物医学数据科学的拉格朗日计算模型
  • 批准号:
    10063532
  • 财政年份:
    2019
  • 资助金额:
    $ 35.51万
  • 项目类别:
Lagrangian computational modeling for biomedical data science
生物医学数据科学的拉格朗日计算模型
  • 批准号:
    10307595
  • 财政年份:
    2019
  • 资助金额:
    $ 35.51万
  • 项目类别:
Utility of Effusion Cytology and Image Analysis in the Diagnosis of Mesothelioma
积液细胞学和图像分析在间皮瘤诊断中的应用
  • 批准号:
    8771979
  • 财政年份:
    2014
  • 资助金额:
    $ 35.51万
  • 项目类别:
Utility of Effusion Cytology and Image Analysis in the Diagnosis of Mesothelioma
积液细胞学和图像分析在间皮瘤诊断中的应用
  • 批准号:
    9369881
  • 财政年份:
    2014
  • 资助金额:
    $ 35.51万
  • 项目类别:
Utility of Effusion Cytology and Image Analysis in the Diagnosis of Mesothelioma
积液细胞学和图像分析在间皮瘤诊断中的应用
  • 批准号:
    8883458
  • 财政年份:
    2014
  • 资助金额:
    $ 35.51万
  • 项目类别:
Automated High-Throuput Estimation and Modeling of Protein Network Distributions
蛋白质网络分布的自动高通量估计和建模
  • 批准号:
    8244428
  • 财政年份:
    2010
  • 资助金额:
    $ 35.51万
  • 项目类别:
Automated High-Throuput Estimation and Modeling of Protein Network Distributions
蛋白质网络分布的自动高通量估计和建模
  • 批准号:
    8054738
  • 财政年份:
    2010
  • 资助金额:
    $ 35.51万
  • 项目类别:
Automated High-Throuput Estimation and Modeling of Protein Network Distributions
蛋白质网络分布的自动高通量估计和建模
  • 批准号:
    7899624
  • 财政年份:
    2010
  • 资助金额:
    $ 35.51万
  • 项目类别:

相似海外基金

Defining the biological boundaries to sustain extant life on Mars
定义维持火星现存生命的生物边界
  • 批准号:
    DP240102658
  • 财政年份:
    2024
  • 资助金额:
    $ 35.51万
  • 项目类别:
    Discovery Projects
Advanced Multiscale Biological Imaging using European Infrastructures
利用欧洲基础设施进行先进的多尺度生物成像
  • 批准号:
    EP/Y036654/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.51万
  • 项目类别:
    Research Grant
Open Access Block Award 2024 - Marine Biological Association
2024 年开放获取区块奖 - 海洋生物学协会
  • 批准号:
    EP/Z532538/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.51万
  • 项目类别:
    Research Grant
NSF/BIO-DFG: Biological Fe-S intermediates in the synthesis of nitrogenase metalloclusters
NSF/BIO-DFG:固氮酶金属簇合成中的生物 Fe-S 中间体
  • 批准号:
    2335999
  • 财政年份:
    2024
  • 资助金额:
    $ 35.51万
  • 项目类别:
    Standard Grant
DESIGN: Driving Culture Change in a Federation of Biological Societies via Cohort-Based Early-Career Leaders
设计:通过基于队列的早期职业领袖推动生物协会联盟的文化变革
  • 批准号:
    2334679
  • 财政年份:
    2024
  • 资助金额:
    $ 35.51万
  • 项目类别:
    Standard Grant
Collaborative Research: The Interplay of Water Condensation and Fungal Growth on Biological Surfaces
合作研究:水凝结与生物表面真菌生长的相互作用
  • 批准号:
    2401507
  • 财政年份:
    2024
  • 资助金额:
    $ 35.51万
  • 项目类别:
    Standard Grant
REU Site: Modeling the Dynamics of Biological Systems
REU 网站:生物系统动力学建模
  • 批准号:
    2243955
  • 财政年份:
    2024
  • 资助金额:
    $ 35.51万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
  • 批准号:
    2411529
  • 财政年份:
    2024
  • 资助金额:
    $ 35.51万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
  • 批准号:
    2411530
  • 财政年份:
    2024
  • 资助金额:
    $ 35.51万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
  • 批准号:
    2412551
  • 财政年份:
    2024
  • 资助金额:
    $ 35.51万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了