Transport transforms for biomedical data modeling, estimation, and classification
用于生物医学数据建模、估计和分类的传输转换
基本信息
- 批准号:10672626
- 负责人:
- 金额:$ 35.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-03-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressBiologicalBrain imagingCOVID-19 patientCellsClassificationClinical SciencesCollaborationsCommunitiesComplementComplexComputer ModelsComputer softwareCytometryDataData AnalysesData SetDevelopmentDisciplineDocumentationElectronic Health RecordEnergy consumptionEngineeringEnsureFundingFutureGene ExpressionGenomeGoalsImageImaging technologyKnee OsteoarthritisLearningLettersMagnetic ResonanceMagnetic Resonance ImagingMathematicsMeasurementMeasuresMethodologyMethodsModelingMolecularOpticsOrganOutcomePathologyPatternPattern RecognitionPhaseProblem SolvingRiskSamplingScientistSeriesSignal TransductionSpecific qualifier valueSpeedSystemTechniquesTechnologyTrainingVisualizationabsorptionbiomedical data sciencebreast cancer diagnosiscancer riskchemical reactiondata miningdata modelingdata spacedeep learningdeep learning modelelectric impedanceexperimental studyhigh dimensionalityimaging Segmentationimprovedinnovationlearning strategylecturesmachine learning modelmathematical modelmicroscopic imagingmorphometrymultidimensional dataneural networkpredictive modelingradiological imagingradiomicsreconstructionsoftware developmenttechnology research and developmenttooltumor progressionvirtualvoltage
项目摘要
The goal of the project is to develop a new mathematical and computational
modeling framework for from biomedical data extracted from biomedical
experiments such as voltages, spectra (e.g. mass, magnetic resonance,
impedance, optical absorption, …), microscopy or radiology images, gene
expression, and many others. Scientists who are looking to understand
relationships between different molecular and cellular measurements are often
faced with questions involving deciphering differences between different cell or
organ measurements. Current approaches (e.g. feature engineering and
classification, end-to-end neural networks) are often viewed as “black boxes,”
given their lack of connection to any biological mechanistic effects. The approach
we propose builds from the “ground up” an entirely new modeling framework
build based on recently developed invertible transformation. As such, it allows for
any machine learning model to be represented in original data space, allowing for
not only increased accuracy in prediction, but also direct visualization and
interpretation. As an outcome of the previous funding period, our current
approach outperforms other mathematical modeling tools when processing
segmented signals and images by a wide margin in terms of accuracy,
computational complexity, amount of training data needed, interpretability and
robustness to out of distribution samples. In this current phase we seek to
generalize the method beyond segmented images and signals to virtually any
dataset type. We will explore proof of concept applications in cytometry,
pathology, and radiomics.
该项目的目标是开发一种新的数学和计算
从生物医学数据中提取的建模框架
例如电压、光谱(例如质量,磁共振,
阻抗、光吸收、.)、显微镜或放射学图像、基因
表情,还有很多。科学家们希望了解
不同分子和细胞测量之间的关系通常
面临的问题涉及破译不同细胞之间的差异,
器官测量当前的方法(例如,特征工程和
分类,端到端神经网络)通常被视为“黑匣子”,
因为它们与任何生物机械效应都没有联系。的方法
我们建议从头开始构建一个全新的建模框架,
基于最近开发的可逆变换构建。因此,它允许
在原始数据空间中表示的任何机器学习模型,允许
不仅提高了预测的准确性,而且直接可视化,
解释。作为上一个融资期的结果,我们目前的
处理时,
在准确性方面以宽的裕度分割信号和图像,
计算复杂性,所需的训练数据量,可解释性和
对分布外样本的稳健性。在现阶段,我们力求
将该方法从分割的图像和信号推广到几乎任何
数据集类型。我们将探索在细胞计数中的概念应用的证明,
病理学和放射组学
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Neural Networks, Hypersurfaces, and the Generalized Radon Transform.
神经网络、超曲面和广义氡变换。
- DOI:10.1109/msp.2020.2978822
- 发表时间:2020
- 期刊:
- 影响因子:14.9
- 作者:Kolouri,Soheil;Yin,Xuwang;Rohde,GustavoK
- 通讯作者:Rohde,GustavoK
Data-driven Identification of Parametric Governing Equations of Dynamical Systems Using the Signed Cumulative Distribution Transform.
- DOI:10.1016/j.cma.2024.116822
- 发表时间:2023-08
- 期刊:
- 影响因子:7.2
- 作者:A. Rubaiyat;D. H. Thai;J. Nichols;M. Hutchinson;S. Wallen;Christina J. Naify;Nathan Geib;M. Haberman;G. Rohde
- 通讯作者:A. Rubaiyat;D. H. Thai;J. Nichols;M. Hutchinson;S. Wallen;Christina J. Naify;Nathan Geib;M. Haberman;G. Rohde
Predicting Malignancy of Breast Imaging Findings Using Quantitative Analysis of Contrast-Enhanced Mammography (CEM).
- DOI:10.3390/diagnostics13061129
- 发表时间:2023-03-16
- 期刊:
- 影响因子:3.6
- 作者:Miller, Matthew M.;Rubaiyat, Abu Hasnat Mohammad;Rohde, Gustavo K.
- 通讯作者:Rohde, Gustavo K.
Real‐time intelligent classification of COVID‐19 and thrombosis via massive image‐based analysis of platelet aggregates
通过基于大规模图像的血小板聚集体分析对 COVID-19 和血栓形成进行实时智能分类
- DOI:10.1002/cyto.a.24721
- 发表时间:2023
- 期刊:
- 影响因子:3.7
- 作者:Zhang Chenqi;Herbig Maik;Zhou Yuqi;Nishikawa Masako;Shifat‐E‐Rabbi Mohammad;Kanno Hiroshi;Yang Ruoxi;Ibayashi Yuma;Xiao Ting‐Hui;Rohde Gustavo K.;Sato Masataka;Kodera Satoshi;Daimon Masao;Yatomi Yutaka;Goda Keisuke
- 通讯作者:Goda Keisuke
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gustavo Kunde Rohde其他文献
Gustavo Kunde Rohde的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gustavo Kunde Rohde', 18)}}的其他基金
Lagrangian computational modeling for biomedical data science
生物医学数据科学的拉格朗日计算模型
- 批准号:
10063532 - 财政年份:2019
- 资助金额:
$ 35.51万 - 项目类别:
Lagrangian computational modeling for biomedical data science
生物医学数据科学的拉格朗日计算模型
- 批准号:
10307595 - 财政年份:2019
- 资助金额:
$ 35.51万 - 项目类别:
Utility of Effusion Cytology and Image Analysis in the Diagnosis of Mesothelioma
积液细胞学和图像分析在间皮瘤诊断中的应用
- 批准号:
8771979 - 财政年份:2014
- 资助金额:
$ 35.51万 - 项目类别:
Utility of Effusion Cytology and Image Analysis in the Diagnosis of Mesothelioma
积液细胞学和图像分析在间皮瘤诊断中的应用
- 批准号:
9369881 - 财政年份:2014
- 资助金额:
$ 35.51万 - 项目类别:
Utility of Effusion Cytology and Image Analysis in the Diagnosis of Mesothelioma
积液细胞学和图像分析在间皮瘤诊断中的应用
- 批准号:
8883458 - 财政年份:2014
- 资助金额:
$ 35.51万 - 项目类别:
Automated High-Throuput Estimation and Modeling of Protein Network Distributions
蛋白质网络分布的自动高通量估计和建模
- 批准号:
8244428 - 财政年份:2010
- 资助金额:
$ 35.51万 - 项目类别:
Automated High-Throuput Estimation and Modeling of Protein Network Distributions
蛋白质网络分布的自动高通量估计和建模
- 批准号:
8054738 - 财政年份:2010
- 资助金额:
$ 35.51万 - 项目类别:
Automated High-Throuput Estimation and Modeling of Protein Network Distributions
蛋白质网络分布的自动高通量估计和建模
- 批准号:
7899624 - 财政年份:2010
- 资助金额:
$ 35.51万 - 项目类别:
相似海外基金
NSF/BIO-DFG: Biological Fe-S intermediates in the synthesis of nitrogenase metalloclusters
NSF/BIO-DFG:固氮酶金属簇合成中的生物 Fe-S 中间体
- 批准号:
2335999 - 财政年份:2024
- 资助金额:
$ 35.51万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411529 - 财政年份:2024
- 资助金额:
$ 35.51万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411530 - 财政年份:2024
- 资助金额:
$ 35.51万 - 项目类别:
Standard Grant
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
- 批准号:
2412551 - 财政年份:2024
- 资助金额:
$ 35.51万 - 项目类别:
Standard Grant
Elucidating mechanisms of biological hydrogen conversion through model metalloenzymes
通过模型金属酶阐明生物氢转化机制
- 批准号:
2419343 - 财政年份:2024
- 资助金额:
$ 35.51万 - 项目类别:
Standard Grant
Collaborative Research: The Interplay of Water Condensation and Fungal Growth on Biological Surfaces
合作研究:水凝结与生物表面真菌生长的相互作用
- 批准号:
2401507 - 财政年份:2024
- 资助金额:
$ 35.51万 - 项目类别:
Standard Grant
DESIGN: Driving Culture Change in a Federation of Biological Societies via Cohort-Based Early-Career Leaders
设计:通过基于队列的早期职业领袖推动生物协会联盟的文化变革
- 批准号:
2334679 - 财政年份:2024
- 资助金额:
$ 35.51万 - 项目类别:
Standard Grant
REU Site: Modeling the Dynamics of Biological Systems
REU 网站:生物系统动力学建模
- 批准号:
2243955 - 财政年份:2024
- 资助金额:
$ 35.51万 - 项目类别:
Standard Grant
Defining the biological boundaries to sustain extant life on Mars
定义维持火星现存生命的生物边界
- 批准号:
DP240102658 - 财政年份:2024
- 资助金额:
$ 35.51万 - 项目类别:
Discovery Projects
Advanced Multiscale Biological Imaging using European Infrastructures
利用欧洲基础设施进行先进的多尺度生物成像
- 批准号:
EP/Y036654/1 - 财政年份:2024
- 资助金额:
$ 35.51万 - 项目类别:
Research Grant














{{item.name}}会员




