Novel Data Structures And Scalable Algorithms For High Throughput Bioinformatics

高通量生物信息学的新颖数据结构和可扩展算法

基本信息

  • 批准号:
    RGPIN-2019-06640
  • 负责人:
  • 金额:
    $ 2.04万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Latest advances in sequencing technologies, especially those from Illumina, 10X Genomics, Pacific Biosciences, and Oxford Nanopore Technologies, are opening up new possibilities and new fields of research. These instruments demonstrate a sustained trend of expanding sequencing throughput, growing read lengths, and improving data quality. In parallel, the cost of using these platforms reached an inflection point, whereby they became increasingly viable for widespread applications across life sciences. However, this translation requires enabling bioinformatics approaches. We propose a bioinformatics project to develop novel data structures specialized for large sequencing datasets, and an innovative RNA-seq assembly tool to leverage the properties of the latest sequencing platforms. Accordingly, we have developed a research plan with two aims. Aim 1. Advanced Data Structures The value of innovative data types in bioinformatics applications has been demonstrated several times. The most prominent example of this is the use of FM-indexing for rapid read alignments. Here, we will build on our extensive expertise with Bloom filters and spaced seeds to address memory and run time bottlenecks in bioinformatics applications. Particularly, we will develop error tolerant methods for the sequence classification problem, where a set of high throughput sequencing reads are assigned to a set of reference genomes and/or genomic loci. Results of this aim will also support the research activities in the second aim of our proposal. Aim 2. RNA-seq Assembly RNA-seq experiments, often in combination with genome sequencing, have proven useful in studying the biology of model and non-model species. Transcriptome analysis based on de novo assembly has demonstrated utility for discovery in many projects, but its routine application in translational studies may be computationally costly, hence requires a rethinking of the problem. Using the advanced data types we will develop in Aim 1, we will leverage the new information modalities in recent sequencing technologies, such as single cell RNA sequencing (scRNA-seq). Our lab has an established track record of developing, disseminating, and maintaining popular bioinformatics tools built on advanced computational methods. We will implement and release our tools and algorithms through our lab's software portal at https://github.com/bcgsc, providing the research community broad and timely access to these enabling technologies, and offering active support. We will also continue to collaborate widely across life sciences domains to apply our analytical methods, and support basic and applied research projects. The aims of this research plan are in response to the identified needs of our collaborators and end users. Last but not the least, we expect this project to serve as a platform to train a number graduate students and interns/co-op students.
测序技术的最新进展,特别是来自Illumina,10 X Genomics,Pacific Biosciences和Oxford Nanopore Technologies的技术,正在开辟新的可能性和新的研究领域。这些仪器显示出扩大测序通量、增加读取长度和提高数据质量的持续趋势。与此同时,使用这些平台的成本达到了一个转折点,使它们在生命科学领域的广泛应用变得越来越可行。然而,这种翻译需要启用生物信息学方法。 我们提出了一个生物信息学项目,以开发专门用于大型测序数据集的新型数据结构,以及一种创新的RNA-seq组装工具,以利用最新测序平台的特性。因此,我们制定了一项具有两个目标的研究计划。 目标1.高级数据结构 创新数据类型在生物信息学应用中的价值已经多次得到证明。其中最突出的例子是使用FM索引进行快速读段比对。在这里,我们将利用我们在Bloom过滤器和间隔种子方面的广泛专业知识来解决生物信息学应用中的内存和运行时瓶颈。特别地,我们将开发用于序列分类问题的容错方法,其中将一组高通量测序读段分配给一组参考基因组和/或基因组基因座。这一目标的结果也将支持我们提案第二个目标中的研究活动。 目标2. RNA-seq组装 RNA-seq实验通常与基因组测序相结合,已被证明在研究模式和非模式物种的生物学方面是有用的。基于从头组装的转录组分析已经在许多项目中证明了发现的实用性,但是其在翻译研究中的常规应用可能在计算上是昂贵的,因此需要重新思考这个问题。使用我们将在目标1中开发的高级数据类型,我们将利用最近测序技术中的新信息模式,例如单细胞RNA测序(scRNA-seq)。 我们的实验室在开发,传播和维护基于先进计算方法的流行生物信息学工具方面有着良好的记录。我们将通过我们实验室的软件门户网站https://github.com/bcgsc实现和发布我们的工具和算法,为研究社区提供广泛而及时的访问这些使能技术的机会,并提供积极的支持。我们还将继续在生命科学领域广泛合作,应用我们的分析方法,并支持基础和应用研究项目。 本研究计划的目的是响应我们的合作者和最终用户的需求。最后但并非最不重要的是,我们希望这个项目作为一个平台,培养一些研究生和实习生/合作学生。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Birol, Inanc其他文献

Linear time complexity de novo long read genome assembly with GoldRush.
  • DOI:
    10.1038/s41467-023-38716-x
  • 发表时间:
    2023-05-22
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Wong, Johnathan;Coombe, Lauren;Nikolic, Vladimir;Zhang, Emily;Nip, Ka Ming;Sidhu, Puneet;Warren, Rene L.;Birol, Inanc
  • 通讯作者:
    Birol, Inanc
Antimicrobial peptides from Rana [Lithobates] catesbeiana: Gene structure and bioinformatic identification of novel forms from tadpoles
  • DOI:
    10.1038/s41598-018-38442-1
  • 发表时间:
    2019-02-06
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Helbing, Caren C.;Hammond, S. Austin;Birol, Inanc
  • 通讯作者:
    Birol, Inanc
Assembly and annotation of the black spruce genome provide insights on spruce phylogeny and evolution of stress response.
  • DOI:
    10.1093/g3journal/jkad247
  • 发表时间:
    2023-12-29
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Lo, Theodora;Coombe, Lauren;Gagalova, Kristina K.;Marr, Alex;Warren, Rene L.;Kirk, Heather;Pandoh, Pawan;Zhao, Yongjun;Moore, Richard A.;Mungall, Andrew J.;Ritland, Carol;Pavy, Nathalie;Jones, Steven J. M.;Bohlmann, Joerg;Bousquet, Jean;Birol, Inanc;Thomson, Ashley
  • 通讯作者:
    Thomson, Ashley
Comprehensive molecular portraits of human breast tumours.
  • DOI:
    10.1038/nature11412
  • 发表时间:
    2012-10-04
  • 期刊:
  • 影响因子:
    64.8
  • 作者:
    Koboldt, Daniel C.;Fulton, Robert S.;McLellan, Michael D.;Schmidt, Heather;Kalicki-Veizer, Joelle;McMichael, Joshua F.;Fulton, Lucinda L.;Dooling, David J.;Ding, Li;Mardis, Elaine R.;Wilson, Richard K.;Ally, Adrian;Balasundaram, Miruna;Butterfield, Yaron S. N.;Carlsen, Rebecca;Carter, Candace;Chu, Andy;Chuah, Eric;Chun, Hye-Jung E.;Coope, Robin J. N.;Dhalla, Noreen;Guin, Ranabir;Hirst, Carrie;Hirst, Martin;Holt, Robert A.;Lee, Darlene;Li, Haiyan I.;Mayo, Michael;Moore, Richard A.;Mungall, Andrew J.;Pleasance, Erin;Robertson, A. Gordon;Schein, Jacqueline E.;Shafiei, Arash;Sipahimalani, Payal;Slobodan, Jared R.;Stoll, Dominik;Tam, Angela;Thiessen, Nina;Varhol, Richard J.;Wye, Natasja;Zeng, Thomas;Zhao, Yongjun;Birol, Inanc;Jones, Steven J. M.;Marra, Marco A.;Cherniack, Andrew D.;Saksena, Gordon;Onofrio, Robert C.;Pho, Nam H.;Carter, Scott L.;Schumacher, Steven E.;Tabak, Barbara;Hernandez, Bryan;Gentry, Jeff;Huy Nguyen;Crenshaw, Andrew;Ardlie, Kristin;Beroukhim, Rameen;Winckler, Wendy;Getz, Gad;Gabriel, Stacey B.;Meyerson, Matthew;Chin, Lynda;Park, Peter J.;Kucherlapati, Raju;Hoadley, Katherine A.;Auman, J. Todd;Fan, Cheng;Turman, Yidi J.;Shi, Yan;Li, Ling;Topal, Michael D.;He, Xiaping;Chao, Hann-Hsiang;Prat, Aleix;Silva, Grace O.;Iglesia, Michael D.;Zhao, Wei;Usary, Jerry;Berg, Jonathan S.;Adams, Michael;Booker, Jessica;Wu, Junyuan;Gulabani, Anisha;Bodenheimer, Tom;Hoyle, Alan P.;Simons, Janae V.;Soloway, Matthew G.;Mose, Lisle E.;Jefferys, Stuart R.;Balu, Saianand;Parker, Joel S.;Hayes, D. Neil;Perou, Charles M.;Malik, Simeen;Mahurkar, Swapna;Shen, Hui;Weisenberger, Daniel J.;Triche, Timothy, Jr.;Lai, Phillip H.;Bootwalla, Moiz S.;Maglinte, Dennis T.;Berman, Benjamin P.;Van den Berg, David J.;Baylin, Stephen B.;Laird, Peter W.;Creighton, Chad J.;Donehower, Lawrence A.;Getz, Gad;Noble, Michael;Voet, Doug;Saksena, Gordon;Gehlenborg, Nils;DiCara, Daniel;Zhang, Juinhua;Zhang, Hailei;Wu, Chang-Jiun;Liu, Spring Yingchun;Lawrence, Michael S.;Zou, Lihua;Sivachenko, Andrey;Lin, Pei;Stojanov, Petar;Jing, Rui;Cho, Juok;Sinha, Raktim;Park, Richard W.;Nazaire, Marc-Danie;Robinson, Jim;Thorvaldsdottir, Helga;Mesirov, Jill;Park, Peter J.;Chin, Lynda;Reynolds, Sheila;Kreisberg, Richard B.;Bernard, Brady;Bressler, Ryan;Erkkila, Timo;Lin, Jake;Thorsson, Vesteinn;Zhang, Wei;Shmulevich, Ilya;Ciriello, Giovanni;Weinhold, Nils;Schultz, Nikolaus;Gao, Jianjiong;Cerami, Ethan;Gross, Benjamin;Jacobsen, Anders;Sinha, Rileen;Aksoy, B. Arman;Antipin, Yevgeniy;Reva, Boris;Shen, Ronglai;Taylor, Barry S.;Ladanyi, Marc;Sander, Chris;Anur, Pavana;Spellman, Paul T.;Lu, Yiling;Liu, Wenbin;Verhaak, Roel R. G.;Mills, Gordon B.;Akbani, Rehan;Zhang, Nianxiang;Broom, Bradley M.;Casasent, Tod D.;Wakefield, Chris;Unruh, Anna K.;Baggerly, Keith;Coombes, Kevin;Weinstein, John N.;Haussler, David;Benz, Christopher C.;Stuart, Joshua M.;Benz, Stephen C.;Zhu, Jingchun;Szeto, Christopher C.;Scott, Gary K.;Yau, Christina;Paul, Evan O.;Carlin, Daniel;Wong, Christopher;Sokolov, Artem;Thusberg, Janita;Mooney, Sean;Sam Ng;Goldstein, Theodore C.;Ellrott, Kyle;Grifford, Mia;Wilks, Christopher;Ma, Singer;Craft, Brian;Yan, Chunhua;Hu, Ying;Meerzaman, Daoud;Gastier-Foster, Julie M.;Bowen, Jay;Ramirez, Nilsa C.;Black, Aaron D.;Pyatt, Robert E.;White, Peter;Zmuda, Erik J.;Frick, Jessica;Lichtenberg, Taram.;Brookens, Robin;George, Myra M.;Gerken, Mark A.;Harper, Hollie A.;Leraas, Kristen M.;Wise, Lisa J.;Tabler, Teresa R.;McAllister, Cynthia;Barr, Thomas;Hart-Kothari, Melissa;Tarvin, Katie;Saller, Charles;Sandusky, George;Mitchell, Colleen;Iacocca, Mary V.;Brown, Jennifer;Rabeno, Brenda;Czerwinski, Christine;Petrelli, Nicholas;Dolzhansky, Oleg;Abramov, Mikhail;Voronina, Olga;Potapova, Olga;Marks, Jeffrey R.;Suchorska, Wiktoria M.;Murawa, Dawid;Kycler, Witold;Ibbs, Matthew;Korski, Konstanty;Spychala, Arkadiusz;Murawa, Pawel;Brzezinski, Jacek J.;Perz, Hanna;Lazniak, Radoslaw;Teresiak, Marek;Tatka, Honorata;Leporowska, Ewa;Bogusz-Czerniewicz, Marta;Malicki, Julian;Mackiewicz, Andrzej;Wiznerowicz, Maciej;Xuan Van Le;Kohl, Bernard;Nguyen Viet Tien;Thorp, Richard;Nguyen Van Bang;Sussman, Howard;Bui Duc Phu;Hajek, Richard;Nguyen Phi Hung;Tran Viet The Phuong;Huynh Quyet Thang;Khan, Khurram Zaki;Penny, Robert;Mallery, David;Curley, Erin;Shelton, Candace;Yena, Peggy;Ingle, James N.;Couch, Fergus J.;Lingle, Wilma L.;King, Tari A.;Gonzalez-Angulo, Ana Maria;Mills, Gordon B.;Dyer, Mary D.;Liu, Shuying;Meng, Xiaolong;Patangan, Modesto;Waldman, Frederic;Stoeppler, Hubert;Rathmell, W. Kimryn;Thorne, Leigh;Huang, Mei;Boice, Lori;Hill, Ashley;Morrison, Carl;Gaudioso, Carmelo;Bshara, Wiam;Daily, Kelly;Egea, Sophie C.;Pegram, Mark D.;Gomez-Fernandez, Carmen;Dhir, Rajiv;Bhargava, Rohit;Brufsky, Adam;Shriver, Craig D.;Hooke, Jeffrey A.;Campbell, Jamie Leigh;Mural, Richard J.;Hu, Hai;Somiari, Stella;Larson, Caroline;Deyarmin, Brenda;Kvecher, Leonid;Kovatich, Albert J.;Ellis, Matthew J.;King, Tari A.;Hu, Hai;Couch, Fergus J.;Mural, Richard J.;Stricker, Thomas;White, Kevin;Olopade, Olufunmilayo;Ingle, James N.;Luo, Chunqing;Chen, Yaqin;Marks, Jeffrey R.;Waldman, Frederic;Wiznerowicz, Maciej;Bose, Ron;Chang, Li-Wei;Beck, Andrew H.;Gonzalez-Angulo, Ana Maria;Pihl, Todd;Jensen, Mark;Sfeir, Robert;Kahn, Ari;Chu, Anna;Kothiyal, Prachi;Wang, Zhining;Snyder, Eric;Pontius, Joan;Ayala, Brenda;Backus, Mark;Walton, Jessica;Baboud, Julien;Berton, Dominique;Nicholls, Matthew;Srinivasan, Deepak;Raman, Rohini;Girshik, Stanley;Kigonya, Peter;Alonso, Shelley;Sanbhadti, Rashmi;Barletta, Sean;Pot, David;Sheth, Margi;Demchok, John A.;Shaw, Kenna R. Mills;Yang, Liming;Eley, Greg;Ferguson, Martin L.;Tarnuzzer, Roy W.;Zhang, Jiashan;Dillon, Laura A. L.;Buetow, Kenneth;Fielding, Peter;Ozenberger, Bradley A.;Guyer, Mark S.;Sofia, Heidi J.;Palchik, Jacqueline D.
  • 通讯作者:
    Palchik, Jacqueline D.
Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma.
  • DOI:
    10.1038/nature10351
  • 发表时间:
    2011-07-27
  • 期刊:
  • 影响因子:
    64.8
  • 作者:
    Morin, Ryan D.;Mendez-Lago, Maria;Mungall, Andrew J.;Goya, Rodrigo;Mungall, Karen L.;Corbett, Richard D.;Johnson, Nathalie A.;Severson, Tesa M.;Chiu, Readman;Field, Matthew;Jackman, Shaun;Krzywinski, Martin;Scott, David W.;Trinh, Diane L.;Tamura-Wells, Jessica;Li, Sa;Firme, Marlo R.;Rogic, Sanja;Griffith, Malachi;Chan, Susanna;Yakovenko, Oleksandr;Meyer, Irmtraud M.;Zhao, Eric Y.;Smailus, Duane;Moksa, Michelle;Chittaranjan, Suganthi;Rimsza, Lisa;Brooks-Wilson, Angela;Spinelli, John J.;Ben-Neriah, Susana;Meissner, Barbara;Woolcock, Bruce;Boyle, Merrill;McDonald, Helen;Tam, Angela;Zhao, Yongjun;Delaney, Allen;Zeng, Thomas;Tse, Kane;Butterfield, Yaron;Birol, Inanc;Holt, Rob;Schein, Jacqueline;Horsman, Douglas E.;Moore, Richard;Jones, Steven J. M.;Connors, Joseph M.;Hirst, Martin;Gascoyne, Randy D.;Marra, Marco A.
  • 通讯作者:
    Marra, Marco A.

Birol, Inanc的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Birol, Inanc', 18)}}的其他基金

Novel Data Structures And Scalable Algorithms For High Throughput Bioinformatics
高通量生物信息学的新颖数据结构和可扩展算法
  • 批准号:
    RGPIN-2019-06640
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Novel Data Structures And Scalable Algorithms For High Throughput Bioinformatics
高通量生物信息学的新颖数据结构和可扩展算法
  • 批准号:
    RGPIN-2019-06640
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Novel Data Structures And Scalable Algorithms For High Throughput Bioinformatics
高通量生物信息学的新颖数据结构和可扩展算法
  • 批准号:
    RGPIN-2019-06640
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Read-to-contig alignments for de novo genome assembly and annotation
用于从头基因组组装和注释的读取到重叠群比对
  • 批准号:
    RGPIN-2014-05112
  • 财政年份:
    2018
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Read-to-contig alignments for de novo genome assembly and annotation
用于从头基因组组装和注释的读取到重叠群比对
  • 批准号:
    RGPIN-2014-05112
  • 财政年份:
    2017
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Read-to-contig alignments for de novo genome assembly and annotation
用于从头基因组组装和注释的读取到重叠群比对
  • 批准号:
    RGPIN-2014-05112
  • 财政年份:
    2016
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Read-to-contig alignments for de novo genome assembly and annotation
用于从头基因组组装和注释的读取到重叠群比对
  • 批准号:
    RGPIN-2014-05112
  • 财政年份:
    2015
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Read-to-contig alignments for de novo genome assembly and annotation
用于从头基因组组装和注释的读取到重叠群比对
  • 批准号:
    RGPIN-2014-05112
  • 财政年份:
    2014
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
  • 批准号:
    61373035
  • 批准年份:
    2013
  • 资助金额:
    77.0 万元
  • 项目类别:
    面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
  • 批准号:
    31070748
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目
高维数据的函数型数据(functional data)分析方法
  • 批准号:
    11001084
  • 批准年份:
    2010
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
  • 批准号:
    31060015
  • 批准年份:
    2010
  • 资助金额:
    25.0 万元
  • 项目类别:
    地区科学基金项目
Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Novel Data Structures And Scalable Algorithms For High Throughput Bioinformatics
高通量生物信息学的新颖数据结构和可扩展算法
  • 批准号:
    RGPIN-2019-06640
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical machine learning for dependent data: symmetry and novel dependence structures
相关数据的统计机器学习:对称性和新颖的相关结构
  • 批准号:
    RGPAS-2020-00095
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Statistical machine learning for dependent data: symmetry and novel dependence structures
相关数据的统计机器学习:对称性和新颖的相关结构
  • 批准号:
    RGPIN-2020-04995
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Novel Data Structures And Scalable Algorithms For High Throughput Bioinformatics
高通量生物信息学的新颖数据结构和可扩展算法
  • 批准号:
    RGPIN-2019-06640
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical machine learning for dependent data: symmetry and novel dependence structures
相关数据的统计机器学习:对称性和新颖的相关结构
  • 批准号:
    RGPAS-2020-00095
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Statistical machine learning for dependent data: symmetry and novel dependence structures
相关数据的统计机器学习:对称性和新颖的相关结构
  • 批准号:
    RGPIN-2020-04995
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical machine learning for dependent data: symmetry and novel dependence structures
相关数据的统计机器学习:对称性和新颖的相关结构
  • 批准号:
    RGPIN-2020-04995
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical machine learning for dependent data: symmetry and novel dependence structures
相关数据的统计机器学习:对称性和新颖的相关结构
  • 批准号:
    RGPAS-2020-00095
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Statistical machine learning for dependent data: symmetry and novel dependence structures
相关数据的统计机器学习:对称性和新颖的相关结构
  • 批准号:
    DGECR-2020-00343
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Launch Supplement
Novel Data Structures And Scalable Algorithms For High Throughput Bioinformatics
高通量生物信息学的新颖数据结构和可扩展算法
  • 批准号:
    RGPIN-2019-06640
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了