Geometric Methods in the Local Langlands Correspondance for p-adic Groups.
p-adic 群的局部 Langlands 对应中的几何方法。
基本信息
- 批准号:RGPIN-2020-05316
- 负责人:
- 金额:$ 1.68万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research program is part of the local Langlands program for p-adic groups.
The ambitious long term aim of this research program is the development of a categorical local Langlands correspondence for p-adic groups.
The Langlands program is one of the major themes of modern mathematics and consists of a series of conjectures spanning number theory, representation theory, and the theory of automorphic forms. The Langlands program conjectures a correspondence between automorphic representations and representations of Galois groups and includes studying both the existence and functorialities of this correspondence. The local Langlands correspondence for p-adic groups is the part of this program related to algebraic and Galois groups over local fields.
Though this correspondence is known in many cases, a conjectural interpretation of the correspondence as a series of functors has not been made. Even a conjectural description of the correspondence in terms of functors would be significant as this would allow for more systematic treatments in those already established cases and allow for proofs which will translate to the remaining unresolved cases.
Our approach builds off of ideas of David Vogan, who introduced into our context the equivariant derived category of sheaves with constructable cohomology on the moduli space of Langlands parameters. This geometric category is used to form a bridge between modules for Hecke algebras (attached to automorphic representations) and Langlands parameters (which are in turn associated to Galois representations). The precise aim of our program is to work towards understanding this bridge as a series of functors.
Though the ultimate objectives are ambitious they lead us naturally towards two major research directions. The first research direction concerns the development of an explicit and workable description of the aforementioned geometric category. Within this theme, we propose to develop effective computational techniques to work explicitly with these objects. A second research direction is to reformulate the many functorialities of the Langlands correspondence in terms of functors on these geometric categories. There are reasons to believe that in many cases what one finds in the geometric context is in fact easier to describe than our current descriptions of these functorialities.
Aside from the contribution these two tasks would make to our theoretical understanding, this work has the added benefit of providing an alternative approach to performing actual computations in the Langlands program. The development of explicit tools for working with these conjectured functorialities then provides an important, and currently often lacking, ability to test, explore, refine and even correct our existing conjectures.
这个研究计划是局部朗兰兹计划的一部分,为p-adic集团。
这项研究计划的雄心勃勃的长期目标是为p-adic群发展一个分类的局部朗兰兹对应。
朗兰兹纲领是现代数学的主要主题之一,它由一系列跨越数论、表示论和自守形式理论的理论组成。朗兰兹计划描述了自守表示和伽罗瓦群表示之间的对应关系,并包括研究这种对应关系的存在性和功能性。p-adic群的局部朗兰兹对应是本程序中与局部域上的代数群和伽罗瓦群相关的部分。
虽然这种对应关系在许多情况下是已知的,但还没有将这种对应关系解释为一系列函子。即使是用函子来描述对应关系也是很重要的,因为这将允许对那些已经成立的案例进行更系统的处理,并允许证明将转化为剩余的未解决的案例。
我们的方法建立在大卫沃根的思想基础上,沃根在我们的上下文中引入了在朗兰兹参数的模空间上具有可构造上同调的层的等变导出范畴。 这个几何范畴被用来在Hecke代数的模(附在自守表示上)和Langlands参数(又与伽罗瓦表示相关联)之间形成桥梁。我们的程序的确切目标是努力将这个桥理解为一系列函子。
虽然最终的目标是雄心勃勃的,但它们自然地将我们引向两个主要的研究方向。第一个研究方向涉及上述几何范畴的明确和可行的描述的发展。在这个主题中,我们建议开发有效的计算技术来明确地处理这些对象。第二个研究方向是用这些几何范畴上的函子来重新表述朗兰兹对应的许多函性。有理由相信,在许多情况下,人们在几何背景下发现的东西实际上比我们目前对这些功能性的描述更容易描述。
除了这两项任务将使我们的理论理解的贡献,这项工作有额外的好处,提供了一种替代方法来执行实际计算的朗兰兹程序。开发明确的工具来处理这些复杂的功能,然后提供了一个重要的,目前经常缺乏的能力来测试,探索,改进甚至纠正我们现有的结构。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fiori, Andrew其他文献
Fiori, Andrew的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fiori, Andrew', 18)}}的其他基金
Geometric Methods in the Local Langlands Correspondance for p-adic Groups.
p-adic 群的局部 Langlands 对应中的几何方法。
- 批准号:
RGPIN-2020-05316 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Geometric Methods in the Local Langlands Correspondance for p-adic Groups.
p-adic 群的局部 Langlands 对应中的几何方法。
- 批准号:
RGPIN-2020-05316 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Geometric Methods in the Local Langlands Correspondance for p-adic Groups.
p-adic 群的局部 Langlands 对应中的几何方法。
- 批准号:
DGECR-2020-00346 - 财政年份:2020
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Launch Supplement
Structure or orthogonal shimura varieties
结构或正交志村品种
- 批准号:
392235-2010 - 财政年份:2011
- 资助金额:
$ 1.68万 - 项目类别:
Postgraduate Scholarships - Doctoral
Structure or orthogonal shimura varieties
结构或正交志村品种
- 批准号:
392235-2010 - 财政年份:2010
- 资助金额:
$ 1.68万 - 项目类别:
Postgraduate Scholarships - Doctoral
Proposal for research of computational methods in algebraic topology
代数拓扑计算方法研究提案
- 批准号:
347451-2008 - 财政年份:2008
- 资助金额:
$ 1.68万 - 项目类别:
Postgraduate Scholarships - Master's
Proposal for research of computational methods in algebraic topology
代数拓扑计算方法研究提案
- 批准号:
347451-2007 - 财政年份:2007
- 资助金额:
$ 1.68万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Combined Local Fisheries Knowledge with Novel Ecology Survey Methods to Identify and Understand Critical Elasmobranch Habitats and Their Threats
将当地渔业知识与新颖的生态调查方法相结合,识别和了解关键软骨鱼类栖息地及其威胁
- 批准号:
2881659 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Studentship
Quantification of microtubule local structures using cryo-ET and novel structural analysis methods.
使用冷冻电子断层扫描和新颖的结构分析方法对微管局部结构进行量化。
- 批准号:
23KJ0472 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Homotopical methods and cohomological supports in local algebra
局部代数中的同伦方法和上同调支持
- 批准号:
2302567 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Standard Grant
Developing new methods for studying the local atomic structure in the FeCo alloys needed for electric aircraft
开发研究电动飞机所需 FeCo 合金局部原子结构的新方法
- 批准号:
2884399 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Studentship
Improvement of cloud radar assimilation methods for predicting local heavy rainfall
局地强降雨预报云雷达同化方法的改进
- 批准号:
22K04345 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometric Methods in the Local Langlands Correspondance for p-adic Groups.
p-adic 群的局部 Langlands 对应中的几何方法。
- 批准号:
RGPIN-2020-05316 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Efficient Conservative High-Order Solution-Flux Domain Decomposition Methods and Local Refinements for Flows in Porous Media and Electromagnetics
多孔介质和电磁学中流动的高效保守高阶解-通量域分解方法和局部细化
- 批准号:
RGPIN-2022-04571 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Derived and perverse methods in the local Langlands correspondence
当地朗兰兹对应中的派生方法和反常方法
- 批准号:
EP/V048252/1 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Research Grant
Studying How State and Local Health Services Delivery Policies can Mitigate the Effects of Disasters on Drug Addiction Treatment and Overdose: A Mixed-Methods Study of COVID-19.
研究州和地方卫生服务提供政策如何减轻灾难对毒瘾治疗和药物过量的影响:COVID-19 的混合方法研究。
- 批准号:
10305182 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Studying How State and Local Health Services Delivery Policies can Mitigate the Effects of Disasters on Drug Addiction Treatment and Overdose: A Mixed-Methods Study of COVID-19.
研究州和地方卫生服务提供政策如何减轻灾难对毒瘾治疗和药物过量的影响:COVID-19 的混合方法研究。
- 批准号:
10631982 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别: