Efficient Conservative High-Order Solution-Flux Domain Decomposition Methods and Local Refinements for Flows in Porous Media and Electromagnetics

多孔介质和电磁学中流动的高效保守高阶解-通量域分解方法和局部细化

基本信息

  • 批准号:
    RGPIN-2022-04571
  • 负责人:
  • 金额:
    $ 1.31万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Modeling contamination flow in porous media plays a crucial role in understanding and predicting complex physical, chemical and flow processes, as well as in preventing and controlling pollution in groundwater modeling and environmental protection. Modeling the propagation of electromagnetic waves is also critically important for many applications of electromagnetic science. Recent rapid growth in the use of electromagnetics in materials and metamaterials includes biomedical imaging and processing, radio-frequency identification (RFID), wireless power transmission, holographic processing, nanolithography, and cloaking devices, etc. The mathematical models describing these processes are complex and there are challenges in the development of accurate methods that preserve the important natural physical properties.  When modeling contamination flows in porous media, mathematical models are nonlinear systems of coupled partial differential equations (PDEs) that involve challenging features such as transport dominance, moving steep fronts, nonlinearity, adsorption, interface and heterogeneity. Solving these problems is driving the development and analysis of efficient, accurate, and conservative domain decomposition methods for long-term, large-scale field prediction problems in parallel computing.  Since modeling faces with the challenges of micro-scale, local solution behavior, complex and refined structure, and long-time response, it is of utmost importance to develop efficient and conservative local mesh-refined methods for electromagnetics. The proposed research program includes: (1) Develop time second-order conservative characteristic domain decomposition methods for contamination porous media flows; (2) Develop conservative fourth-order block-centered compact-difference solution-flux domain decomposition method for contamination flows; (3) Develop energy-preserving local mesh-refined fourth-order S-FDTD schemes for Maxwell's equations; (4) Develop energy-preserving curvilinear-coordinated local mesh-refined S-FDTD schemes for electromagnetics; and (5) Develop global energy-preserving local mesh-refined S-FDTD schemes for metamaterial electromagnetics. The research program will benefit Canada through the establishment of methods, theories, algorithms and applications of conservative domain decomposition and local refinement techniques for computational fluid dynamics in porous media and computational electromagnetics. It will also train students and postdocs to meet the growing demand for highly qualified personnel in the environmental and electromagnetic industries and in the computing technology.
多孔介质中的污染流建模对于理解和预测复杂的物理、化学和流动过程以及地下水建模和环境保护中的污染预防和控制起着至关重要的作用。电磁波传播建模对于电磁科学的许多应用也至关重要。最近,电磁学在材料和超材料中的应用迅速增长,包括生物医学成像和处理、射频识别 (RFID)、无线电力传输、全息处理、纳米光刻和隐形装置等。描述这些过程的数学模型非常复杂,在开发保留重要自然物理特性的精确方法方面存在挑战。  在对多孔介质中的污染物流进行建模时,数学模型是耦合偏微分方程 (PDE) 的非线性系统,涉及具有挑战性的特征,例如传输优势、移动陡峭锋面、非线性、吸附、界面和异质性。解决这些问题正在推动针对并行计算中长期、大规模现场预测问题的高效、准确和保守的域分解方法的开发和分析。  由于建模面临着微观尺度、局部解行为、复杂精细结构和长时间响应的挑战,因此开发高效且保守的电磁学局部网格细化方法至关重要。拟研究项目包括:(1)开发污染多孔介质流的时间二阶保守特征域分解方法; (2) 发展保守的四阶块中心紧致差分解-通量域污染流分解方法; (3) 为麦克斯韦方程组开发能量守恒的局部网格细化四阶S-FDTD方案; (4) 开发电磁学节能曲线协调局部网格细化S-FDTD方案; (5) 开发超材料电磁学的全局节能局部网格细化 S-FDTD 方案。该研究计划将通过建立多孔介质计算流体动力学和计算电磁学的保守域分解和局部细化技术的方法、理论、算法和应用,使加拿大受益。它还将培训学生和博士后,以满足环境和电磁行业以及计算技术领域对高素质人才不断增长的需求。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Liang, Dong其他文献

Chlorophyll density inversion of soybean canopy based on multi-angle imaging hyperspectral data
基于多角度成像高光谱数据的大豆冠层叶绿素密度反演
A novel chenodeoxycholic acid-verticinone ester induces apoptosis and cell cycle arrest in HepG2 cells
一种新型鹅去氧胆酸-华替酮酯诱导 HepG2 细胞凋亡和细胞周期停滞
  • DOI:
    10.1016/j.steroids.2012.08.013
  • 发表时间:
    2012-11
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Liang, Dong;Zhou, Qing;Zhang, Jiuliang;Gong, Wei;Xu, Chuanrui;Lie, Bin;Wang, Yi;Li, Jiangtao
  • 通讯作者:
    Li, Jiangtao
The Genus Parabacteroides Is a Potential Contributor to the Beneficial Effects of Truncal Vagotomy-Related Bariatric Surgery.
  • DOI:
    10.1007/s11695-022-06017-9
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Liang, Dong;Zhang, Xin;Liu, Zhaorui;Zheng, Rui;Zhang, Longjiang;Yu, Dong;Shen, Xiaojun
  • 通讯作者:
    Shen, Xiaojun
Metabolite Identification of a Novel Anti-Leishmanial Agent OJT007 in Rat Liver Microsomes Using LC-MS/MS.
  • DOI:
    10.3390/molecules27092854
  • 发表时间:
    2022-04-30
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Nigro, Maria Eugenia Rincon;Du, Ting;Gao, Song;Kaur, Manvir;Xie, Huan;Olaleye, Omonike Arike;Liang, Dong
  • 通讯作者:
    Liang, Dong
Cyclic pentapeptide type compounds from Clerodendrum japonicum (Thunb.) Sweet
  • DOI:
    10.1016/j.tetlet.2018.08.017
  • 发表时间:
    2018-09-19
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Zhang, Shu-Lin;Huang, Ri-Zhen;Liang, Dong
  • 通讯作者:
    Liang, Dong

Liang, Dong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Liang, Dong', 18)}}的其他基金

Development of High-Order Conservative Numerical Methods for Electromagnetics in Metamaterials and Transport Flows in Environment
超材料电磁学和环境传输流高阶保守数值方法的发展
  • 批准号:
    RGPIN-2017-05666
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Development of High-Order Conservative Numerical Methods for Electromagnetics in Metamaterials and Transport Flows in Environment
超材料电磁学和环境传输流高阶保守数值方法的发展
  • 批准号:
    RGPIN-2017-05666
  • 财政年份:
    2020
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Development of High-Order Conservative Numerical Methods for Electromagnetics in Metamaterials and Transport Flows in Environment
超材料电磁学和环境传输流高阶保守数值方法的发展
  • 批准号:
    RGPIN-2017-05666
  • 财政年份:
    2019
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Development of High-Order Conservative Numerical Methods for Electromagnetics in Metamaterials and Transport Flows in Environment
超材料电磁学和环境传输流高阶保守数值方法的发展
  • 批准号:
    RGPIN-2017-05666
  • 财政年份:
    2018
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Development of High-Order Conservative Numerical Methods for Electromagnetics in Metamaterials and Transport Flows in Environment
超材料电磁学和环境传输流高阶保守数值方法的发展
  • 批准号:
    RGPIN-2017-05666
  • 财政年份:
    2017
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Development of Efficient Numerical Methods for Fluid Flows and Electromagnetics
流体流动和电磁学的有效数值方法的开发
  • 批准号:
    238471-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Development of Efficient Numerical Methods for Fluid Flows and Electromagnetics
流体流动和电磁学的有效数值方法的开发
  • 批准号:
    238471-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Development of Efficient Numerical Methods for Fluid Flows and Electromagnetics
流体流动和电磁学的有效数值方法的开发
  • 批准号:
    238471-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Development of Efficient Numerical Methods for Fluid Flows and Electromagnetics
流体流动和电磁学的有效数值方法的开发
  • 批准号:
    425337-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Development of Efficient Numerical Methods for Fluid Flows and Electromagnetics
流体流动和电磁学的有效数值方法的开发
  • 批准号:
    238471-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Surgery vs. conservative care for meniscal tear after unsuccessful PT: an RCT
PT 失败后半月板撕裂的手术与保守治疗:随机对照试验
  • 批准号:
    10579419
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
Citizenship education policy in England under the Conservative government
保守党政府时期英格兰的公民教育政策
  • 批准号:
    23K02156
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Exploiting the GEOTRACES toolbox to characterize ocean biogeochemical processes: trace elements, isotopes and new quasi-conservative tracers.
利用 GEOTRACES 工具箱来表征海洋生物地球化学过程:微量元素、同位素和新的准保守示踪剂。
  • 批准号:
    2898327
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Studentship
Conservative discontinuous Galerkin methods with implicit penalty parameters and multiscale hybridizable discontinuous Galerkin methods for PDEs
具有隐式惩罚参数的保守间断伽辽金方法和偏微分方程的多尺度可杂交间断伽辽金方法
  • 批准号:
    2309670
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Standard Grant
Was the deep Atlantic dominated by southern source waters during the LGM? A conservative view based on the oxygen isotopic ratio of benthic foraminifera
末次盛冰期期间,大西洋深海是否以南部源水为主?
  • 批准号:
    2306931
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Standard Grant
Home-based conservative care model for advanced kidney disease
晚期肾病的家庭保守治疗模式
  • 批准号:
    10535360
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
Elucidation of factors causing conservative party splits
造成保守党分裂的因素解析
  • 批准号:
    22K01321
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Theoretical Developments and Applications of Conservative Discretizations
保守离散化的理论发展与应用
  • 批准号:
    RGPIN-2019-07286
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
The Safety and Feasibility of Transcranial Direct Current Stimulation Combined with Conservative Treatment for Cervicogenic Headaches
经颅直流电刺激联合保守治疗颈源性头痛的安全性和可行性
  • 批准号:
    486431
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Studentship Programs
Geometric foundation of invariant and conservative parameterization schemes
不变保守参数化方案的几何基础
  • 批准号:
    RGPIN-2016-06457
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了