Innovative Machine Learning for Medical Data Analytics
用于医疗数据分析的创新机器学习
基本信息
- 批准号:RGPIN-2019-06680
- 负责人:
- 金额:$ 2.99万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
BACKGROUND: The modern clinician is buried in data: Radiographic images, blood chemistry, clinical notes and more. Within, and especially between, these different sources of data lie critical insights into the health of patients. These insights, however, go mostly unobserved in contemporary clinical practice due to catastrophic information overload.
MOTIVATION: Most machine learning methods employed in medical imaging were originally designed for computer vision with applications in very different domains than medical data. These methods cannot directly handle the challenge of heterogeneity (different image modalities, different acquisition protocols, different documentation formats, different time series) and non-standardized acquisition time in medical data. Moreover, they are usually designed to use very large training dataset (e.g. one million training samples with labelled ground truth), which is usually not possible in medical data applications.
OBJECTIVES: Our aim is to form a multidisciplinary research program to fundamentally investigate the innovative machine learning handling heterogeneity for medical data analytics. Specifically, over 5 years, we will pursue our aim following these objectives, which explore: 1) the first unified feature extraction from both images and texts; 2) the first heterogeneous domains adaption; 3) the first next-generation computer-aided diagnosis system; 4) the longitudinal risk prediction systems.
APPROACH: We will build on our previous success in fundamental regression learning and direct analytics system. Our newly proposed approaches will be based on the state-of-art machine learning (e.g. generative adversarial network) framework and our self-proposed optimization functions. Together they will provide a seamless analytic framework for all the data acquired ned from heterogeneous sources. And then these new approaches will be embedded in the multiple computer-aided diagnosis and prediction system to enable the new clinical applications.
NOVELTY AND EXPECTED SIGNIFICANCE: This research will further enrich the fast-growing fields of machine learning and data science and move them from theoretical and fundamental science to practical engineering. It will enable prediction of diseases onset or progression and prognosis. This will allow physicians to better treat their patients and lead to improved health and quality of life for patients; to understand as much about a patient as possible, as early in their life as possible. This is crucial since identifying warning signs of serious illness at an early stage enables prevention and treatments that are far simpler and less expensive than those needed at later stages of the disease. This research will provide added value with no extra cost to existing clinical data and lead to more effective and efficient healthcare, which will benefit patients, physicians, and the broader healthcare system.
背景:现代临床医生被数据所淹没:放射影像、血液化学、临床记录等等。在这些不同的数据来源中,尤其是在这些数据来源之间,存在着对患者健康的重要见解。然而,由于灾难性的信息过载,这些见解在当代临床实践中大多未被观察到。
动机:医学成像中使用的大多数机器学习方法最初都是为计算机视觉设计的,其应用领域与医学数据截然不同。这些方法不能直接处理医疗数据中的异质性(不同的图像模态、不同的采集协议、不同的文档格式、不同的时间序列)和非标准化采集时间的挑战。此外,它们通常被设计为使用非常大的训练数据集(例如,带有标记的地面真值的一百万个训练样本),这在医学数据应用中通常是不可能的。
目的:我们的目标是形成一个多学科的研究计划,从根本上研究创新的机器学习处理医疗数据分析的异质性。具体而言,在未来5年内,我们将按照以下目标实现我们的目标:1)第一个从图像和文本中提取统一特征; 2)第一个异构域适应; 3)第一个下一代计算机辅助诊断系统; 4)纵向风险预测系统。
方法:我们将建立在我们以前在基本回归学习和直接分析系统方面的成功基础上。我们新提出的方法将基于最先进的机器学习(例如生成对抗网络)框架和我们自己提出的优化函数。它们将一起为从不同来源获取的所有数据提供一个无缝的分析框架。然后将这些新方法嵌入到多计算机辅助诊断和预测系统中,以实现新的临床应用。
新奇和预期意义:这项研究将进一步丰富快速发展的机器学习和数据科学领域,并将其从理论和基础科学转向实际工程。它将能够预测疾病的发作或进展以及预后。这将使医生能够更好地治疗他们的患者,并改善患者的健康和生活质量;尽可能多地了解患者,尽可能早地了解他们的生活。这一点至关重要,因为在早期阶段识别严重疾病的警告信号可以使预防和治疗比疾病后期所需的预防和治疗简单得多,成本也低得多。这项研究将为现有的临床数据提供附加值,而不会产生额外的成本,并带来更有效和更高效的医疗保健,这将使患者,医生和更广泛的医疗保健系统受益。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Li, Shuo其他文献
Synthesis and Application of Porous Carbon Nanomaterials from Pomelo Peels: A Review.
- DOI:
10.3390/molecules28114429 - 发表时间:
2023-05-30 - 期刊:
- 影响因子:4.6
- 作者:
Liu, Zixuan;Yang, Qizheng;Cao, Lei;Li, Shuo;Zeng, Xiangchen;Zhou, Wenbo;Zhang, Cheng - 通讯作者:
Zhang, Cheng
Unwrapped Phase Estimation Via Normalized Probability Density Function for Multibaseline InSAR
通过归一化概率密度函数进行多基线 InSAR 展开相位估计
- DOI:
10.1109/access.2018.2886702 - 发表时间:
2019-01-01 - 期刊:
- 影响因子:3.9
- 作者:
Xu, Huaping;Li, Shuo;Liu, Wei - 通讯作者:
Liu, Wei
cfSNV: a software tool for the sensitive detection of somatic mutations from cell-free DNA.
- DOI:
10.1038/s41596-023-00807-w - 发表时间:
2023-05 - 期刊:
- 影响因子:14.8
- 作者:
Li, Shuo;Hu, Ran;Small, Colin;Kang, Ting-Yu;Liu, Chun-Chi;Zhou, Xianghong Jasmine;Li, Wenyuan - 通讯作者:
Li, Wenyuan
A microwave-activated coal fly ash catalyst for the oxidative elimination of organic pollutants in a Fenton-like process.
微波活化粉煤灰催化剂,用于类芬顿过程中氧化消除有机污染物
- DOI:
10.1039/c9ra00875f - 发表时间:
2019-03-06 - 期刊:
- 影响因子:3.9
- 作者:
Wang, Nannan;Xu, Han;Li, Shuo - 通讯作者:
Li, Shuo
Stability and -Gain Analysis for Positive Switched Systems with Time-Varying Delay Under State-Dependent Switching
状态相关切换下具有时变延迟的正切换系统的稳定性和增益分析
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:2.3
- 作者:
Li, Shuo;Xiang, Zhengrong - 通讯作者:
Xiang, Zhengrong
Li, Shuo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Li, Shuo', 18)}}的其他基金
Innovative Machine Learning for Medical Data Analytics
用于医疗数据分析的创新机器学习
- 批准号:
RGPIN-2019-06680 - 财政年份:2022
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Innovative Machine Learning for Medical Data Analytics
用于医疗数据分析的创新机器学习
- 批准号:
RGPIN-2019-06680 - 财政年份:2021
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Innovative Machine Learning for Medical Data Analytics
用于医疗数据分析的创新机器学习
- 批准号:
RGPIN-2019-06680 - 财政年份:2019
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Adaptive information processing in hybrid imaging on the cloud
云端混合成像中的自适应信息处理
- 批准号:
RGPIN-2014-05037 - 财政年份:2018
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Computer aided cardiac image diagnosis
计算机辅助心脏图像诊断
- 批准号:
499385-2016 - 财政年份:2017
- 资助金额:
$ 2.99万 - 项目类别:
Collaborative Research and Development Grants
Adaptive information processing in hybrid imaging on the cloud
云端混合成像中的自适应信息处理
- 批准号:
RGPIN-2014-05037 - 财政年份:2017
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Adaptive information processing in hybrid imaging on the cloud
云端混合成像中的自适应信息处理
- 批准号:
RGPIN-2014-05037 - 财政年份:2016
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Computer aided cardiac image diagnosis
计算机辅助心脏图像诊断
- 批准号:
499385-2016 - 财政年份:2016
- 资助金额:
$ 2.99万 - 项目类别:
Collaborative Research and Development Grants
Adaptive information processing in hybrid imaging on the cloud
云端混合成像中的自适应信息处理
- 批准号:
RGPIN-2014-05037 - 财政年份:2015
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
An innovative cyber compliance platform using AI, live monitoring data and machine learning to automate compliance and due diligence completion.
一个创新的网络合规平台,使用人工智能、实时监控数据和机器学习来自动完成合规和尽职调查。
- 批准号:
10100493 - 财政年份:2024
- 资助金额:
$ 2.99万 - 项目类别:
Collaborative R&D
Innovative prediction method for for chemical-induced developmental toxicity using causal inference through machine learning.
通过机器学习进行因果推理来预测化学品引起的发育毒性的创新方法。
- 批准号:
23H03555 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Using Innovative Machine Learning to Detect Organized Support and Opposition to E-cigarette Use Prevention Campaign Messaging on Twitter and TikTok
使用创新的机器学习来检测 Twitter 和 TikTok 上有组织的对电子烟使用预防运动消息的支持和反对
- 批准号:
10720700 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
Innovative Use of Machine-Learning Algorithm Assistance to Rapidly Recognize the Presence of Sudden Cardiac Arrest and Initiate Life-Saving CPR Instructions During Conversations Between 9-1-1 Callers and Telecommunicators.
创新地使用机器学习算法辅助来快速识别心脏骤停的存在,并在 9-1-1 呼叫者和电信员之间的对话期间启动挽救生命的心肺复苏指令。
- 批准号:
487794 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
Miscellaneous Programs
Innovative Quantum/Ising based Machine Learning
基于创新量子/Ising 的机器学习
- 批准号:
22KJ0319 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Developing an Innovative Platform for Modeling Active Road User Interactions and Safety: Integration of Computer Vision, Agent-based, and Machine Learning Models
开发用于对主动道路用户交互和安全进行建模的创新平台:计算机视觉、基于代理和机器学习模型的集成
- 批准号:
RGPIN-2019-06688 - 财政年份:2022
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Innovative development of statistical and machine learning approaches for financial and actuarial risk measurement
用于财务和精算风险测量的统计和机器学习方法的创新开发
- 批准号:
22H00834 - 财政年份:2022
- 资助金额:
$ 2.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
An innovative and centralised chemical trading platform using machine-learning technology that could optimise buying costs by over 40%
%20创新%20和%20集中%20化学%20交易%20平台%20使用%20机器学习%20技术%20%20可以%20优化%20购买%20成本%20by%20超过%2040%
- 批准号:
10035464 - 财政年份:2022
- 资助金额:
$ 2.99万 - 项目类别:
Collaborative R&D
Innovative Machine Learning for Medical Data Analytics
用于医疗数据分析的创新机器学习
- 批准号:
RGPIN-2019-06680 - 财政年份:2022
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
An innovative PrivacyTech tool for data management utilising machine learning that could reduce consumer data exposure by 30% per year
An%20innovative%20PrivacyTech%20tool%20for%20data%20management%20utilizing%20machine%20learning%20that%20could%20reduce%20consumer%20data%20exposure%20by%2030%%20per%20year
- 批准号:
10023303 - 财政年份:2022
- 资助金额:
$ 2.99万 - 项目类别:
Collaborative R&D