Secure and Privacy-Preserving Edge Caching in Next-Generation Mobile Networks

下一代移动网络中的安全和隐私保护边缘缓存

基本信息

  • 批准号:
    RGPIN-2020-04708
  • 负责人:
  • 金额:
    $ 2.4万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Next-generation mobile networks (NGMNs) provide ultra-reliable and affordable broadband access everywhere, not only to cellular hand-carried devices, but also to a massive number of devices in machine-to-machine communications, cyber-physical systems, and Internet of Things. By integrating disruptive technologies, NGMNs are expected to support supremely high data rates and extremely low latency to enable emerging applications, e.g., remote control of smart vehicles, and virtual/augmented reality, thereby making our life more convenient. Mobile edge computing is a promising technology for NGMNs to offer service environment and cloud-computing capabilities in an effective manner at the edge of mobile networks. By exploiting the storage and computing resources at the network edge, popular contents can be temporarily maintained on cache-enabled edge nodes (e.g., macro base stations, Wi-Fi access points, and roadside infrastructure) for handling frequent data access requests from mobile users. Since the cached contents are delivered directly from edge nodes instead of from the remote cloud, it significantly reduces service latency, decreases network load, and improves user experience. Despite the appealing benefits of edge caching, it is vulnerable to a variety of cyber attacks, e.g., cache poisoning attacks and cache pollution attacks, which results in huge concerns of privacy, security and trust. The proposed research will address these concerns, particularly by considering privacy, security and trust threats in all aspects of mobile edge caching, including content placement, content delivery and content usage, which have not yet been comprehensively discussed in reported studies. Our objective is to design an efficient, secure and privacy-preserving edge-caching framework for NGMNs. Specifically, we will (1) propose privacy-preserving federated learning models for content placement to maximize the cache-hit rate, while preserving the privacy of mobile users; (2) design effective content locators on edge nodes for content exploration, and propose efficient key management mechanisms to support secure delivery of popular contents to a group of mobile users; (3) propose efficient content verification schemes based on the Blockchain for securing content usage, and build a trustful edge-caching framework by designing Blockchain-based auction and privacy-preserving smart contracts. The proposed research will help Canada establish and reinforce its leadership in ICT (Information and Communication Technologies). As such, new business models and revenue streams can be fostered and devised to ensure continued steady growth of the ICT sector in Canada. Through the program, 2 PhD, 3 MSc and 2 Undergraduate students will be trained as future researchers/engineers with expertise in cyber security, mobile communications and machine learning; these are crucial for the development of NGMNs, and will help to ensure a prosperous future for the Canadian ICT industry.
下一代移动的网络(NGMN)不仅为蜂窝手持设备,而且还为机器对机器通信、网络物理系统和物联网中的大量设备提供了超可靠且可负担的宽带接入。通过集成颠覆性技术,NGMN有望支持极高的数据速率和极低的延迟,以实现新兴应用,例如,智能汽车的远程控制和虚拟/增强现实,从而使我们的生活更加方便。移动的边缘计算是下一代移动网络在移动的网络边缘以有效的方式提供服务环境和云计算能力的一种有前途的技术。通过利用网络边缘处的存储和计算资源,流行内容可以暂时保持在启用高速缓存的边缘节点(例如,宏基站、Wi-Fi接入点和路边基础设施),用于处理来自移动的用户的频繁数据访问请求。由于缓存的内容直接从边缘节点而不是从远程云交付,因此它显著减少了服务延迟,降低了网络负载,并改善了用户体验。尽管边缘缓存具有吸引人的优点,但它容易受到各种网络攻击,例如,缓存中毒攻击和缓存污染攻击,这导致了隐私,安全和信任的巨大关注。 拟议的研究将解决这些问题,特别是通过考虑移动的边缘缓存各个方面的隐私,安全和信任威胁,包括内容放置,内容交付和内容使用,这些尚未在报告的研究中全面讨论。我们的目标是设计一个高效,安全和隐私保护的边缘缓存框架的NGMN。具体来说,我们将 (1)提出隐私保护的联合学习模型,用于内容放置,以最大化缓存命中率,同时保护移动的用户的隐私; (2)在边缘节点上设计有效的内容定位器以进行内容探索,并提出有效的密钥管理机制以支持将流行内容安全地传送给一组移动的用户; (3)提出基于区块链的高效内容验证方案以确保内容使用安全,并通过设计基于区块链的拍卖和隐私保护智能合约来构建可信的边缘缓存框架。 拟议的研究将有助于加拿大建立和加强其在ICT(信息和通信技术)方面的领导地位。因此,可以培育和设计新的商业模式和收入来源,以确保加拿大信息和通信技术部门的持续稳定增长。 通过该计划,2名博士,3名硕士和2名本科生将被培训为未来的研究人员/工程师,他们具有网络安全,移动的通信和机器学习方面的专业知识;这些对于NGMN的发展至关重要,并将有助于确保加拿大ICT行业的繁荣未来。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ni, Jianbing其他文献

Securing Fog Computing for Internet of Things Applications: Challenges and Solutions
  • DOI:
    10.1109/comst.2017.2762345
  • 发表时间:
    2018-01-01
  • 期刊:
  • 影响因子:
    35.6
  • 作者:
    Ni, Jianbing;Zhang, Kuan;Shen, Xuemin (Sherman)
  • 通讯作者:
    Shen, Xuemin (Sherman)
Efficient and Secure Service-Oriented Authentication Supporting Network Slicing for 5G-Enabled IoT
SECURITY AND PRIVACY FOR MOBILE EDGE CACHING: CHALLENGES AND SOLUTIONS
  • DOI:
    10.1109/mwc.001.2000329
  • 发表时间:
    2021-06-01
  • 期刊:
  • 影响因子:
    12.9
  • 作者:
    Ni, Jianbing;Zhang, Kuan;Vasilakos, Athanasios V.
  • 通讯作者:
    Vasilakos, Athanasios V.
Toward Edge-Assisted Internet of Things: From Security and Efficiency Perspectives
  • DOI:
    10.1109/mnet.2019.1800229
  • 发表时间:
    2019-03-01
  • 期刊:
  • 影响因子:
    9.3
  • 作者:
    Ni, Jianbing;Lin, Xiaodong;Shen, Xuemin (Sherman)
  • 通讯作者:
    Shen, Xuemin (Sherman)
Security, Privacy, and Fairness in Fog-Based Vehicular Crowdsensing
  • DOI:
    10.1109/mcom.2017.1600679
  • 发表时间:
    2017-06-01
  • 期刊:
  • 影响因子:
    11.2
  • 作者:
    Ni, Jianbing;Zhang, Aiqing;Shen, Xuemin (Sherman)
  • 通讯作者:
    Shen, Xuemin (Sherman)

Ni, Jianbing的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ni, Jianbing', 18)}}的其他基金

Secure and Privacy-Preserving Edge Caching in Next-Generation Mobile Networks
下一代移动网络中的安全和隐私保护边缘缓存
  • 批准号:
    RGPIN-2020-04708
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Secure and Privacy-Preserving Edge Caching in Next-Generation Mobile Networks
下一代移动网络中的安全和隐私保护边缘缓存
  • 批准号:
    RGPIN-2020-04708
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Secure and Privacy-Preserving Edge Caching in Next-Generation Mobile Networks
下一代移动网络中的安全和隐私保护边缘缓存
  • 批准号:
    DGECR-2020-00429
  • 财政年份:
    2020
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Launch Supplement

相似海外基金

Privacy-preserving machine learning through secure management of data's lifecycle in distributed systems: REMINDER
通过安全管理分布式系统中的数据生命周期来保护隐私的机器学习:提醒
  • 批准号:
    EP/Y036301/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Research Grant
CRII: SaTC: Toward Secure, Privacy-Preserving, and Efficient Crowdsourcing Systems
CRII:SaTC:迈向安全、隐私保护和高效的众包系统
  • 批准号:
    2246143
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Secure and Privacy-Preserving Dynamic Spectrum Access
协作研究:SaTC:核心:小型:安全且保护隐私的动态频谱访问
  • 批准号:
    2325563
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Standard Grant
Efficient Secure Multi-Party Computation Framework for Privacy-Preserving Machine Learning
用于保护隐私的机器学习的高效安全多方计算框架
  • 批准号:
    22KF0098
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Collaborative Research: EAGER: SaTC-EDU: Secure and Privacy-Preserving Adaptive Artificial Intelligence Curriculum Development for Cybersecurity
合作研究:EAGER:SaTC-EDU:安全和隐私保护的网络安全自适应人工智能课程开发
  • 批准号:
    2335624
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Secure and Privacy-Preserving Dynamic Spectrum Access
协作研究:SaTC:核心:小型:安全且保护隐私的动态频谱访问
  • 批准号:
    2325564
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Standard Grant
Collaborative Research: CCRI: New: Medium: A Development and Experimental Environment for Privacy-preserving and Secure (DEEPSECURE) Machine Learning
合作研究:CCRI:新:媒介:隐私保护和安全(DEEPSECURE)机器学习的开发和实验环境
  • 批准号:
    2245250
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Standard Grant
Secure and Privacy-Preserving Edge Caching in Next-Generation Mobile Networks
下一代移动网络中的安全和隐私保护边缘缓存
  • 批准号:
    RGPIN-2020-04708
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
NSF Convergence Accelerator Track G: Privacy-preserving Intrusion-resilient Secure Multiparty-computation-based Overlay (PISMO) for Secure and Resilient Communication Through 5G
NSF 融合加速器轨道 G:隐私保护、抗入侵、基于安全多方计算的覆盖 (PISMO),通过 5G 实现安全和弹性通信
  • 批准号:
    2226457
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Standard Grant
CRII: SaTC: Towards Secure and Privacy-preserving Input on Augmented Reality Systems
CRII:SaTC:增强现实系统的安全和隐私保护输入
  • 批准号:
    2153397
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了