Privacy-preserving machine learning through secure management of data's lifecycle in distributed systems: REMINDER

通过安全管理分布式系统中的数据生命周期来保护隐私的机器学习:提醒

基本信息

  • 批准号:
    EP/Y036301/1
  • 负责人:
  • 金额:
    $ 40.2万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

The Artificial Intelligence (AI) becomes ubiquitous and leading a technological paradigm shift. Some of the main objectives set out in the United Nations' Sustainable Development Goals (SDGs) for 2030 will require to be addressed through the responsible use of AI techniques to transform data into real knowledge for the benefit of our society. This trend is being driven through an increasing degree of hyperconnectivity based on the integration of distributed systems into the Internet infrastructure mainly based on the deployment of Internet of Things (IoT) technologies as well as 5G/6G infrastructures. The integration of such systems will enable new data-based services in our surrounding environment, e.g., in the context of sustainable cities and communities or advanced eHealth services. To provide these services effectively and efficiently, a key aspect is the management of security and privacy throughout the data's lifecycle in a way that ensures the services are based on trustworthy information provided by legitimate systems. In this direction, this project (REMINDER) will design a decentralized and secure approach for the access and processing of data produced by distributed systems. In particular, REMINDER will design and implement an edge-based architecture for applications using Federated Learning (FL) that will be accessible to resource-constrained end nodes. Unlike most current deployments, the architecture will enable a collaborative model creation without the need to share the data itself. This architecture will consider the high degree of dynamism of decentralized and distributed systems by designing a node selection approach for the training process in the FL architecture while considering end systems' features (e.g., device status or battery level), as well as their evolution during their life cycle. Additionally, REMINDER will address some of the major security and privacy challenges associated with the use of decentralized Machine Learning (ML) approaches, such as FL. In this direction, the project will analyze the use of cryptographic techniques, such as Differential Privacy (DP) and Secure Multi- Party Computation (SMPC) for the sake of reaching the right balance between the effectiveness provided by ML techniques and the level of privacy being guaranteed. Data privacy will be considered in rest, transit, and while processing. The proposed solutions will be preventive and reactive. They will also ensure the privacy preserving aspects are being compliant with existing data protection regulations, such as the GDPR over the data lifecycle. REMINDER will also address some of the major security attacks in FL environments by designing and implementing an authentication protocol to ensure that only legitimate systems are able to take part in the collaborative creation process of ML models. Moreover, REMINDER will demonstrate the feasibility of the proposed research through two main use cases around eHealth and smart buildings.
人工智能(AI)变得无处不在,并导致技术范式的转变。联合国2030年可持续发展目标(SDG)中规定的一些主要目标需要通过负责任地使用人工智能技术将数据转化为真实的知识来实现,以造福我们的社会。这一趋势是通过基于分布式系统集成到互联网基础设施中的高度连接来推动的,主要是基于物联网(IoT)技术以及5G/6 G基础设施的部署。这些系统的集成将使我们周围环境中的新的基于数据的服务成为可能,例如,在可持续城市和社区或先进的电子卫生服务的背景下。为了有效和高效地提供这些服务,一个关键方面是在整个数据生命周期中管理安全和隐私,确保服务基于合法系统提供的可信信息。在这方面,该项目(REMINDER)将设计一种分散和安全的方法,用于访问和处理分布式系统产生的数据。特别是,REMINDER将为使用联邦学习(FL)的应用程序设计和实现一个基于边缘的架构,该架构将可供资源受限的终端节点访问。与当前大多数部署不同,该架构将支持协作模型创建,而无需共享数据本身。该架构将通过为FL架构中的训练过程设计节点选择方法,同时考虑端系统的特征(例如,设备状态或电池电量),以及它们在生命周期中的演变。此外,REMINDER将解决与使用分散式机器学习(ML)方法(如FL)相关的一些主要安全和隐私挑战。在这个方向上,该项目将分析加密技术的使用,如差分隐私(DP)和安全多方计算(SMPC)为了在ML技术提供的有效性和保证的隐私水平之间达到适当的平衡。数据隐私将在休息,运输和处理时考虑。拟议的解决办法将是预防性和反应性的。他们还将确保隐私保护方面符合现有的数据保护法规,例如数据生命周期中的GDPR。REMINDER还将通过设计和实现身份验证协议来解决FL环境中的一些主要安全攻击,以确保只有合法的系统才能参与ML模型的协作创建过程。此外,REMINDER将通过围绕电子健康和智能建筑的两个主要用例来证明拟议研究的可行性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Djamel Djenouri其他文献

Djamel Djenouri的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

面向MANET的密钥管理关键技术研究
  • 批准号:
    61173188
  • 批准年份:
    2011
  • 资助金额:
    52.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402815
  • 财政年份:
    2024
  • 资助金额:
    $ 40.2万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402817
  • 财政年份:
    2024
  • 资助金额:
    $ 40.2万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402816
  • 财政年份:
    2024
  • 资助金额:
    $ 40.2万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Accelerating Privacy-Preserving Machine Learning as a Service: From Algorithm to Hardware
协作研究:SaTC:核心:中:加速保护隐私的机器学习即服务:从算法到硬件
  • 批准号:
    2247893
  • 财政年份:
    2023
  • 资助金额:
    $ 40.2万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Accelerating Privacy-Preserving Machine Learning as a Service: From Algorithm to Hardware
协作研究:SaTC:核心:中:加速保护隐私的机器学习即服务:从算法到硬件
  • 批准号:
    2247891
  • 财政年份:
    2023
  • 资助金额:
    $ 40.2万
  • 项目类别:
    Continuing Grant
Efficient Secure Multi-Party Computation Framework for Privacy-Preserving Machine Learning
用于保护隐私的机器学习的高效安全多方计算框架
  • 批准号:
    22KF0098
  • 财政年份:
    2023
  • 资助金额:
    $ 40.2万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Robust privacy preserving distributed analysis platform for cancer research: addressing data bias and disparities
用于癌症研究的强大隐私保护分布式分析平台:解决数据偏差和差异
  • 批准号:
    10642562
  • 财政年份:
    2023
  • 资助金额:
    $ 40.2万
  • 项目类别:
Collaborative Research: SaTC: CORE: Medium: Accelerating Privacy-Preserving Machine Learning as a Service: From Algorithm to Hardware
协作研究:SaTC:核心:中:加速保护隐私的机器学习即服务:从算法到硬件
  • 批准号:
    2247892
  • 财政年份:
    2023
  • 资助金额:
    $ 40.2万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Accelerating Privacy-Preserving Machine Learning as a Service: From Algorithm to Hardware
协作研究:SaTC:核心:中:加速保护隐私的机器学习即服务:从算法到硬件
  • 批准号:
    2348733
  • 财政年份:
    2023
  • 资助金额:
    $ 40.2万
  • 项目类别:
    Continuing Grant
Identifying pediatric asthma subtypes using novel privacy-preserving federated machine learning methods
使用新颖的隐私保护联合机器学习方法识别小儿哮喘亚型
  • 批准号:
    10713424
  • 财政年份:
    2023
  • 资助金额:
    $ 40.2万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了