Enabling the Design of Advanced Hybrid Bio-Nanonetworks

实现先进混合生物纳米网络的设计

基本信息

  • 批准号:
    RGPIN-2019-06874
  • 负责人:
  • 金额:
    $ 2.04万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Our research in nanotechnology (nanotech) deals with the communication and network formation needs of nanodevices. While new, the technology is critical to the development of intelligent nanotech and will impact several areas, e.g. in-vivo diagnostics, non-invasive nanosurgery, pharmaceutics, treatment of neurodegenerative diseases (e.g. Alzheimer's, Parkinson's) and mental disorders (e.g. Schizophrenia, ASD, ADHD), network-on-chip design and fabrication methods. The technology has evolved along two directions: (i) Dry nanotech: nanodevices are manufactured with inorganic materials, e.g. silicon, graphene. (ii) Wet nanotech: it uses organic materials & nanomachines, e.g. biological cells, proteins, enzymes, bacteria, viruses, DNA and RNA macromolecules, ion particles, etc. Each has its advantages & disadvantages. Several applications would require nanomachines from both categories, e.g. in-vivo monitoring of bio-chemical substances for diagnosis, delivery of smart drugs. There will also be need to manufacture nanomachines consisting of both types; hybrid nanomachines. In case of co-existence, it is important to understand how one type will affect the other. Use of THz Wave (THzW) frequencies (0.1 THz to 10 THz) is considered in intra-body communications. They are non-ionizing, thus should not cause DNA modifications. Also their communication components, e.g. antennas, modulators, can be of nanoscale size. However, there is no thorough study assessing the impact, in-vivo THzW transmissions have, on molecular communications (MC). Diffusion MC (DMC) are sensitive to the entropy level molecules of the medium have. THzW transmissions increase the vibration level of molecules, which, as our initial work confirmed, impacts negatively DMC. In this project, we will establish thorough understanding of this behaviour and develop accurate models of the diffusion channel. Develop design guidelines for hybrid nanomachines, e.g. combined biosensor-THzW transmitter. Develop new MC systems and protocols that perform well in this environment, and propose how we can use the medium's observed behaviour constructively to improve applications (e.g. target drug delivery). The second part of our work deals with Optogenetics (OGN). An emerging fields in neuroscience, OGN modifies otherwise insensitive to light neurons by genetically implanting specialized light-sensitive transmembrane proteins (opsins). There are proposals to use OGN for treatment of brain related disorders. Our OGN related work in this project will develop tools to determine the best way to stimulate an OGN neuron to generate firing sequence as close as possible to a target firing sequence. Develop OGN nanomachines that will enable inter-neural stimulation (replacing neurotransmitter-based stimulation); develop architectures and protocols to effectively move neuronal spike trains through all-OGN nanoneuronal networks.
我们在纳米技术(nanotech)的研究涉及纳米器件的通信和网络形成需求。虽然是新技术,但该技术对智能纳米技术的发展至关重要,并将影响几个领域,例如体内诊断,非侵入性纳米外科手术,制药,神经退行性疾病(如阿尔茨海默氏症,帕金森氏症)和精神障碍(如精神分裂症,ASD,ADHD)的治疗,芯片上的网络设计和制造方法。该技术已沿着两个方向发展:(i)干法纳米技术:纳米器件是用无机材料制造的,例如硅、石墨烯。(ii)湿纳米技术:它使用有机材料和纳米机器,例如生物细胞、蛋白质、酶、细菌、病毒、DNA和RNA大分子、离子粒子等。一些应用将需要来自这两个类别的纳米机器,例如用于诊断的生物化学物质的体内监测,智能药物的递送。还需要制造由两种类型组成的纳米机器;混合纳米机器。在共存的情况下,了解一种类型如何影响另一种类型非常重要。 在体内通信中考虑使用太赫兹波(THzW)频率(0.1 THz至10 THz)。它们是非电离的,因此不会引起DNA修饰。此外,它们的通信组件(例如,天线、调制器)可以是纳米级尺寸。然而,目前还没有全面的研究评估体内THzW传输对分子通讯(MC)的影响。扩散MC(DMC)对介质分子的熵级敏感。THzW传输增加了分子的振动水平,正如我们最初的工作所证实的,这对DMC产生了负面影响。在这个项目中,我们将建立对这种行为的全面理解,并开发精确的扩散通道模型。开发混合纳米机器的设计指南,例如组合生物传感器-THzW发射器。开发新的MC系统和协议,在这种环境中表现良好,并提出我们如何建设性地使用介质的观察行为,以改善应用(例如靶向药物输送)。 我们工作的第二部分涉及光遗传学(OGN)。OGN是神经科学中的一个新兴领域,它通过基因植入特定的光敏跨膜蛋白(opsins)来修饰对光不敏感的神经元。有人建议使用OGN治疗脑相关疾病。我们在这个项目中的OGN相关工作将开发工具来确定刺激OGN神经元产生尽可能接近目标放电序列的放电序列的最佳方式。开发OGN纳米机器,实现神经间刺激(取代基于神经递质的刺激);开发架构和协议,通过全OGN纳米神经元网络有效地移动神经元尖峰序列。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MAKRAKIS, DIMITRIOS其他文献

MAKRAKIS, DIMITRIOS的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MAKRAKIS, DIMITRIOS', 18)}}的其他基金

Enabling the Design of Advanced Hybrid Bio-Nanonetworks
实现先进混合生物纳米网络的设计
  • 批准号:
    RGPIN-2019-06874
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Enabling the Design of Advanced Hybrid Bio-Nanonetworks
实现先进混合生物纳米网络的设计
  • 批准号:
    RGPIN-2019-06874
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Applications of AI in Market Design
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研 究基金项目
基于“Design-Build-Test”循环策略的新型紫色杆菌素组合生物合成研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
在噪声和约束条件下的unitary design的理论研究
  • 批准号:
    12147123
  • 批准年份:
    2021
  • 资助金额:
    18 万元
  • 项目类别:
    专项基金项目

相似海外基金

Development of advanced molecular transformations based on innovative molecular design of higher order organosuperbase catalysts enabling molecular recognition
基于高阶有机超碱催化剂的创新分子设计开发先进的分子转化,从而实现分子识别
  • 批准号:
    22H00319
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Development of advanced molecular transformations based on innovative molecular design of higher order organosuperbase catalysts enabling molecular recognition
基于高阶有机超碱催化剂的创新分子设计开发先进的分子转化,从而实现分子识别
  • 批准号:
    22H04969
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Enabling the Design of Advanced Hybrid Bio-Nanonetworks
实现先进混合生物纳米网络的设计
  • 批准号:
    RGPIN-2019-06874
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Enabling the Design of Advanced Hybrid Bio-Nanonetworks
实现先进混合生物纳米网络的设计
  • 批准号:
    RGPIN-2019-06874
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Enabling new disruptive magnetic imaging technologies through advanced instrument design
通过先进的仪器设计实现新的颠覆性磁成像技术
  • 批准号:
    RGPIN-2014-06052
  • 财政年份:
    2018
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Enabling new disruptive magnetic imaging technologies through advanced instrument design
通过先进的仪器设计实现新的颠覆性磁成像技术
  • 批准号:
    RGPIN-2014-06052
  • 财政年份:
    2017
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Enabling new disruptive magnetic imaging technologies through advanced instrument design
通过先进的仪器设计实现新的颠覆性磁成像技术
  • 批准号:
    RGPIN-2014-06052
  • 财政年份:
    2016
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Enabling new disruptive magnetic imaging technologies through advanced instrument design
通过先进的仪器设计实现新的颠覆性磁成像技术
  • 批准号:
    RGPIN-2014-06052
  • 财政年份:
    2015
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Enabling new disruptive magnetic imaging technologies through advanced instrument design
通过先进的仪器设计实现新的颠覆性磁成像技术
  • 批准号:
    RGPIN-2014-06052
  • 财政年份:
    2014
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
GOALI/Collaborative Research: Enabling Advanced Wind Turbine Tower Manufacturing with Reliability-Based Design
GOALI/合作研究:通过基于可靠性的设计实现先进的风力涡轮机塔架制造
  • 批准号:
    1334122
  • 财政年份:
    2013
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了