Mathematical Methods in Linguistics and Phylogenetics

语言学和系统发育学中的数学方法

基本信息

  • 批准号:
    RGPIN-2019-06911
  • 负责人:
  • 金额:
    $ 1.53万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

The proposed research consists of three major projects that are mostly independent of each other. The first two are in mathematical linguistics and involve both mathematical modelling and working with real data, and the third is in phylogenetics, and is mostly theoretical, though with applications in mind for the long term. Linguistics Plain vs Clear Speech- An important aspect of communication is that speakers can adjust the style of their speech in different contexts. Yue Wang's lab at SFU experimentally investigates the many contrasts between clear and plain speech, where clear speech is any speech that is produced in difficult communicative circumstances. This provides two challenges to my group which we will pursue in tandem (i) characterizing the differences between clear and plain speech. This involves analyzing the rich data sets Wang's lab produces. (ii) Developing a falsifiable theory of clear speech that can encompass many of the empirical phenomena we observe. We will analyze speech as a game played between a speaker and a hearer and use game theory to make experimentally testable predictions. A Speech Error Database and Models of Speech Production- An important source of information about the mechanisms of speech production is the errors that are made in speech. John Alderete (SFU Linguistics) and collaborators have collected an extensive high-quality data base of naturally occurring speech errors. We will use this newly available database to identify regularities in the way that speech errors occur and then see which speech production models embody the same regularities. We will eventually provide a model of speech production that captures both the basic features of speech along with statistical regularities in the data. Phylogenetics - A tight span for stochastic processes Phylogenetics is the task of determining the evolutionary history of a group of organisms from their genetic data. An important way this has been done is to define a distance between each pair of organisms based on the similarity of their genetic information. This gives a finite metric space which now can be analyzed using the tools of metric geometry. One such tool is the tight span which gives a canonical embedding of the finite metric space into a polyhedral complex. The combinatorics of this complex can then be studied to characterize the original metric space. A downside of this approach to phylogenetics is that deriving a metric from the data for each organism throws out a lot of information. In fact, genetic data can be modeled as the observation of the distribution of a stochastic process with index set the set of organisms. This research seeks to derive an analogue of the tight span for stochastic processes, and then develop its use in phylogenetics and other applications in data science.
拟议的研究由三个主要项目组成,这些项目大多相互独立。前两个是数学语言学,涉及数学建模和处理实际数据,第三个是系统发育,主要是理论上的,尽管考虑到长期的应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tupper, Paul其他文献

Genomic epidemiology offers high resolution estimates of serial intervals for COVID-19.
  • DOI:
    10.1038/s41467-023-40544-y
  • 发表时间:
    2023-08-10
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Stockdale, Jessica E.;Susvitasari, Kurnia;Tupper, Paul;Sobkowiak, Benjamin;Mulberry, Nicola;da Silva, Anders Goncalves;Watt, Anne E.;Sherry, Norelle L.;Minko, Corinna;Howden, Benjamin P.;Lane, Courtney R.;Colijn, Caroline
  • 通讯作者:
    Colijn, Caroline
A Universal Separable Diversity
  • DOI:
    10.1515/agms-2017-0008
  • 发表时间:
    2017-03-01
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Bryant, David;Nies, Andre;Tupper, Paul
  • 通讯作者:
    Tupper, Paul
FRAISSE LIMITS FOR RELATIONAL METRIC STRUCTURES
  • DOI:
    10.1017/jsl.2021.65
  • 发表时间:
    2021-09-01
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    Bryant, David;Nies, Andre;Tupper, Paul
  • 通讯作者:
    Tupper, Paul
COVID-19 endgame: From pandemic to endemic? Vaccination, reopening and evolution in low- and high-vaccinated populations.
  • DOI:
    10.1016/j.jtbi.2022.111368
  • 发表时间:
    2023-02-21
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Are, Elisha B.;Song, Yexuan;Stockdale, Jessica E.;Tupper, Paul;Colijn, Caroline
  • 通讯作者:
    Colijn, Caroline
Characterizing the distinctive acoustic cues of Mandarin tones

Tupper, Paul的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tupper, Paul', 18)}}的其他基金

Mathematical Methods in Linguistics and Phylogenetics
语言学和系统发育学中的数学方法
  • 批准号:
    RGPIN-2019-06911
  • 财政年份:
    2022
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Methods in Linguistics and Phylogenetics
语言学和系统发育学中的数学方法
  • 批准号:
    RGPIN-2019-06911
  • 财政年份:
    2021
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Applied Mathematics
应用数学
  • 批准号:
    1000229232-2013
  • 财政年份:
    2019
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Canada Research Chairs
Mathematical Methods in Linguistics and Phylogenetics
语言学和系统发育学中的数学方法
  • 批准号:
    RGPIN-2019-06911
  • 财政年份:
    2019
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Applied Mathematics
应用数学
  • 批准号:
    1000229232-2013
  • 财政年份:
    2018
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Canada Research Chairs
Mathematical Models in Cognitive Science: Neural Fields and Exemplar Dynamics
认知科学中的数学模型:神经场和范例动力学
  • 批准号:
    RGPIN-2014-03713
  • 财政年份:
    2018
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Models in Cognitive Science: Neural Fields and Exemplar Dynamics
认知科学中的数学模型:神经场和范例动力学
  • 批准号:
    RGPIN-2014-03713
  • 财政年份:
    2017
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Applied Mathematics
应用数学
  • 批准号:
    1000229232-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Canada Research Chairs
Applied Mathematics
应用数学
  • 批准号:
    1000229232-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Canada Research Chairs
Mathematical Models in Cognitive Science: Neural Fields and Exemplar Dynamics
认知科学中的数学模型:神经场和范例动力学
  • 批准号:
    461913-2014
  • 财政年份:
    2016
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Impact of Urban Environmental Factors on Momentary Subjective Wellbeing (SWB) using Smartphone-Based Experience Sampling Methods
使用基于智能手机的体验采样方法研究城市环境因素对瞬时主观幸福感 (SWB) 的影响
  • 批准号:
    2750689
  • 财政年份:
    2025
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Studentship
Developing behavioural methods to assess pain in horses
开发评估马疼痛的行为方法
  • 批准号:
    2686844
  • 财政年份:
    2025
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Studentship
Population genomic methods for modelling bacterial pathogen evolution
用于模拟细菌病原体进化的群体基因组方法
  • 批准号:
    DE240100316
  • 财政年份:
    2024
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Early Career Researcher Award
Development and Translation Mass Spectrometry Methods to Determine BioMarkers for Parkinson's Disease and Comorbidities
确定帕金森病和合并症生物标志物的质谱方法的开发和转化
  • 批准号:
    2907463
  • 财政年份:
    2024
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Studentship
Non invasive methods to accelerate the development of injectable therapeutic depots
非侵入性方法加速注射治疗储库的开发
  • 批准号:
    EP/Z532976/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Research Grant
Spectral embedding methods and subsequent inference tasks on dynamic multiplex graphs
动态多路复用图上的谱嵌入方法和后续推理任务
  • 批准号:
    EP/Y002113/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Research Grant
CAREER: Nonlinear Dynamics of Exciton-Polarons in Two-Dimensional Metal Halides Probed by Quantum-Optical Methods
职业:通过量子光学方法探测二维金属卤化物中激子极化子的非线性动力学
  • 批准号:
    2338663
  • 财政年份:
    2024
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Continuing Grant
Conference: North American High Order Methods Con (NAHOMCon)
会议:北美高阶方法大会 (NAHOMCon)
  • 批准号:
    2333724
  • 财政年份:
    2024
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Standard Grant
REU Site: Computational Methods with applications in Materials Science
REU 网站:计算方法及其在材料科学中的应用
  • 批准号:
    2348712
  • 财政年份:
    2024
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Standard Grant
CAREER: New methods in curve counting
职业:曲线计数的新方法
  • 批准号:
    2422291
  • 财政年份:
    2024
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了