Arithmetic Properties of Global Fields
全局字段的算术属性
基本信息
- 批准号:RGPIN-2020-03915
- 负责人:
- 金额:$ 1.31万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
My research area is number theory. I am interested in studying arithmetic properties of integers and the ring of polynomials over the finite fields. I plan to pursue my research on the following areas.
The first question concerns the uniform hypothesis for the generalized Waring's problem. For any positive integers s, k and n, let Rs,k(n) be the number of representations of the positive integer n as the sum of s kth powers of positive integers. It is widely expected that when k>2 and s>k, Rs,k(n) has an asymptotic formula. Let G(k) be the smallest value s such that Rs,k(n) has an asymptotic formula. Due to recent progress on the nested efficient congruencing method introduced by T. D. Wooley and the decoupling method developed by J. Bourgain, C. Demeter and L. Guth, one can largely sharpen the upper bounds for G(k). This problem can be generalized to systems of homogenous equations in multi-variables, whose terms are of the same form with the coefficient one; such a system is called the general Waring's system. In order to obtain a bound for G(k) for the general Waring's system, we need to assume the uniform hypothesis, an assumption on the existence of certain local solutions. My goal is to prove this hypothesis.
The next area concerns problems in Drinfeld modules. The study of elliptic curves is important in modern number theory. Drinfeld modules are the function field analogue of elliptic curves. V. Drinfeld first introduced this subject to solve the Langlands conjecture in function fields, and was awarded the Fields medal for his work. Many questions in elliptic curves can be formulated in the Drinfeld module setting. I plan to study Artin's primitive root conjecture and Erdos-Pomerance's conjecture for Drinfeld modules. Artin's primitive root conjecture is about the distribution of the generators in the multiplicative groups of finite fields of prime order; Erdos-Pomerance's conjecture is about the distribution of number of prime divisiors of the multiplicative groups of finite abelian groups. These two conjectures concern probabilistic properties of the integers. Their analogues in the setting of Drinfeld modules are interesting problems and have not been carefully studied yet.
There are many questions in number theory that are suitable for training different levels of students. At the entry level, students can start with problems in the classical setting and then conduct numerical experiments for the analogous problems in the function field setting. More sophisticated and talented students can study numerical data to make conjectures, or even prove them.
我的研究领域是数论。我对研究有限域上整数和多项式环的算术性质很感兴趣。我计划在以下几个方面进行研究。
第一个问题是关于广义华林问题的一致假设。对于任何正整数s,k和n,设Rs,k(n)是正整数n表示为正整数s的k次幂和的个数。当k>2,s>k时,Rs,k(n)有一个渐近公式。设G(k)是使Rs,k(n)有渐近公式的最小值s。由于T. D. Wooley和J. Bourgain,C. Demeter和L. Guth,人们可以大大地锐化G(k)的上界。这个问题可以推广到多变量齐次方程组,其项与系数1具有相同的形式;这样的系统被称为广义华林系统。为了得到一般Waring系统的G(k)的界,我们需要假设一致性假设,即存在某些局部解的假设。我的目标是证明这个假设。
下一个领域涉及Drinfeld模中的问题。椭圆曲线的研究在现代数论中占有重要地位。Drinfeld模是椭圆曲线的函数域模拟。V. Drinfeld首先介绍了这一主题,以解决函数域中的朗兰兹猜想,并因其工作而被授予菲尔兹奖。椭圆曲线中的许多问题都可以在Drinfeld模的设置下公式化。我计划研究Drinfeld模的Artin原根猜想和Erdos-Pomerance猜想。Artin的原根猜想是关于素数阶有限域的乘法群的生成元的分布; Erdos-Pomerance的猜想是关于有限交换群的乘法群的素因子数的分布。这两个定理涉及整数的概率性质。它们在Drinfeld模中的类似物是一个有趣的问题,尚未被仔细研究。
数论中有许多问题,适合培养不同层次的学生。在入门阶段,学生可以从经典设置中的问题开始,然后在函数域设置中对类似问题进行数值实验。更复杂和更有才华的学生可以研究数字数据来制作图表,甚至证明它们。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kuo, Wentang其他文献
Multidimensional Vinogradov-type Estimates in Function Fields
函数域中的多维 Vinogradov 型估计
- DOI:
10.4153/cjm-2013-014-9 - 发表时间:
2014-08 - 期刊:
- 影响因子:0
- 作者:
Kuo, Wentang;Liu, Yu-Ru;Zhao, Xiaomei - 通讯作者:
Zhao, Xiaomei
Kuo, Wentang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kuo, Wentang', 18)}}的其他基金
Arithmetic Properties of Global Fields
全局字段的算术属性
- 批准号:
RGPIN-2020-03915 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Arithmetic Properties of Global Fields
全局字段的算术属性
- 批准号:
RGPIN-2020-03915 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Arithmetic Properties of Function Fields
函数域的算术性质
- 批准号:
RGPIN-2015-03709 - 财政年份:2019
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Arithmetic Properties of Function Fields
函数域的算术性质
- 批准号:
RGPIN-2015-03709 - 财政年份:2018
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Arithmetic Properties of Function Fields
函数域的算术性质
- 批准号:
RGPIN-2015-03709 - 财政年份:2017
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Arithmetic Properties of Function Fields
函数域的算术性质
- 批准号:
RGPIN-2015-03709 - 财政年份:2016
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Arithmetic Properties of Function Fields
函数域的算术性质
- 批准号:
RGPIN-2015-03709 - 财政年份:2015
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Arithmetic properties of automorphic forms and Drinfeld modules
自守形式和 Drinfeld 模的算术性质
- 批准号:
288296-2009 - 财政年份:2013
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Arithmetic properties of automorphic forms and Drinfeld modules
自守形式和 Drinfeld 模的算术性质
- 批准号:
288296-2009 - 财政年份:2012
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Arithmetic properties of automorphic forms and Drinfeld modules
自守形式和 Drinfeld 模的算术性质
- 批准号:
288296-2009 - 财政年份:2011
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Arithmetic Properties of Global Fields
全局字段的算术属性
- 批准号:
RGPIN-2020-03915 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Duality Invariant Supergravity, String Geometry and Global Properties of T-Duality in arbitrary Dimension and Signature
任意维度和签名中的对偶不变超引力、弦几何和T-对偶的全局性质
- 批准号:
2751314 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Studentship
Graphs and their structure: the interplay between local and global properties of graphs
图及其结构:图的局部属性和全局属性之间的相互作用
- 批准号:
RGPIN-2016-05237 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Arithmetic Properties of Global Fields
全局字段的算术属性
- 批准号:
RGPIN-2020-03915 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
RUI: Galois Automorphisms and Local-Global Properties of Representations of Finite Groups
RUI:有限群表示的伽罗瓦自同构和局部全局性质
- 批准号:
2100912 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Standard Grant
Local and global biomechanical properties of the eye as new glaucoma risk factors
眼睛的局部和整体生物力学特性作为新的青光眼危险因素
- 批准号:
443021 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Operating Grants
Graphs and their structure: the interplay between local and global properties of graphs
图及其结构:图的局部属性和全局属性之间的相互作用
- 批准号:
RGPIN-2016-05237 - 财政年份:2020
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Sequential Bayesian inference for spatio-temporal probabilistic models of changes in global vegetation and ocean properties using Earth Observation da
使用地球观测数据对全球植被和海洋特性变化的时空概率模型进行顺序贝叶斯推断
- 批准号:
2438462 - 财政年份:2020
- 资助金额:
$ 1.31万 - 项目类别:
Studentship
Modeling study on the impact of detailed biophysical properties of individual neurons on global network dynamics in the cerebellum
单个神经元详细生物物理特性对小脑全局网络动态影响的建模研究
- 批准号:
20K06850 - 财政年份:2020
- 资助金额:
$ 1.31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Cirrus Cloud Formation and Microphysical Properties from In-situ Observed Characteristics to Global Climate Impacts
合作研究:从现场观测特征到全球气候影响的卷云形成和微物理特性
- 批准号:
2001903 - 财政年份:2019
- 资助金额:
$ 1.31万 - 项目类别:
Standard Grant