Arithmetic Properties of Function Fields
函数域的算术性质
基本信息
- 批准号:RGPIN-2015-03709
- 负责人:
- 金额:$ 1.24万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
My research area is number theory. An important subject in number theory is the ring of polynomials over a finite field, called a function field. It bears a close resemblance to the ring of integers. Many results about integers can be asked of these analogues. ******One example is the multi-dimensional Waring's problem. For any positive integers s, k and n, let R_s,k(n) be the number of representations of the positive integer n as the sum of s kth powers of positive integers. It is widely expected that when k>2 and s>k, R_s,k(n) has an asymptotic formula. Let u(k) be the smallest value s such that R_s,k(n) has an asymptotic formula. G. H. Hardy and J. E. Littlewood were the first to obtain the bound 2k^2+2k-3 for u(k). Since then, the upper bound of u(k) has been improved by many people. This problem has been formulated in the multi-dimensional setting over the integers by S. T. Parsell. I would like to sharpen the upper bound of u(k) in the function field case, by adopting the efficient congruencing method in function fields, invented by T. D. Wooley. ******A second example is a Sidon sequence. Given a sequence of positive integers A, we say that A is a Sidon set if for all a, a' in A, a+a' are distinct. A Sidon set A is called a Sidon basis of order h if any positive integer n can be written as a sum of h elements of A. S. Sidon introduced this concept in his work in Fourier analysis, to investigate certain power series with bounded coefficients. P. Erdos conjectured that there is a Sidon basis of order 3. This conjecture is still open today. We can ask the same question for function fields. My goal is to use probabilistic methods to prove that Erdos' conjecture and other related questions hold for the function field case.******A third class of examples are problems in Drinfeld modules. The study of elliptic curves is important in modern number theory. Drinfeld modules are the function field analogue of elliptic curves. V. Drinfeld first introduced this subject to solve the Langlands conjecture in function fields, and was awarded the Fields medal for his work. Many questions in elliptic curves can be formulated in the Drinfeld module setting. I plan to study Koblitz's conjecture and Erdos-Pomerance's conjecture on Drinfeld modules. These two conjectures regard probabilistic properties of Drinfeld modules whose elliptic curve analogues have not been proved yet. My work on them will shed light on the original conjectures on elliptic curves. ******There are many questions in number theory that are suitable for training different levels of students. At the entry level, students can start with problems in the classical setting and then conduct numerical experiments for the analogue problems with the function field setting. More sophisticated and talented students can study the numerical data to make conjectures, or even prove them. Many students have been successful under my training.
我的研究领域是数论。数论中的一个重要课题是有限域上的多项式环,称为函数域。它与整数环非常相似。许多关于整数的结果可以从这些类比中得到。* 一个例子是多维华林问题。对于任意正整数s,k和n,设Rs,k(n)是正整数n表示为s的k次幂和的个数。当k>2,s>k时,R_s,k(n)存在一个渐近公式。设u(k)是使R_s,k(n)有渐近公式的最小值s。G. H.哈代和J. E. Littlewood是第一个得到u(k)的2k^2+2k-3界的人。此后,u(k)的上界被许多人改进。这个问题已经在整数上的多维设置中由S制定。T.帕塞尔本文采用T. D.伍利* 第二个例子是Sidon序列。给定一个正整数序列A,我们说A是一个Sidon集,如果对于A中的所有a,a',a+a'是不同的。一个Sidon集A称为h阶Sidon基,如果任何正整数n都可以写成A的h个元素之和。S.西顿介绍了这一概念,在他的工作中傅立叶分析,调查某些权力系列有界系数。P. Erdos证明了有一个3阶的Sidon基。这一猜想至今仍有争议。我们可以对函数域提出同样的问题。我的目标是用概率方法证明Erdos猜想和其他相关问题在函数域的情况下成立。第三类例子是Drinfeld模中的问题。椭圆曲线的研究在现代数论中占有重要地位。Drinfeld模是椭圆曲线的函数域模拟。V. Drinfeld首先介绍了这一主题,以解决函数域中的朗兰兹猜想,并因其工作而被授予菲尔兹奖。椭圆曲线中的许多问题都可以在Drinfeld模块设置中公式化。我计划研究Drinfeld模上的Koblitz猜想和Erdos-Pomerance猜想。这两个定理考虑的是Drinfeld模的概率性质,其椭圆曲线类似物尚未得到证明。我对它们的研究将有助于阐明椭圆曲线上的原始几何。** 数论中有很多题适合训练不同层次的学生。在入门阶段,学生可以从经典设置的问题开始,然后用函数域设置的模拟问题进行数值实验。更复杂和更有才华的学生可以研究数字数据来制作图表,甚至证明它们。许多学生在我的指导下取得了成功。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kuo, Wentang其他文献
Multidimensional Vinogradov-type Estimates in Function Fields
函数域中的多维 Vinogradov 型估计
- DOI:
10.4153/cjm-2013-014-9 - 发表时间:
2014-08 - 期刊:
- 影响因子:0
- 作者:
Kuo, Wentang;Liu, Yu-Ru;Zhao, Xiaomei - 通讯作者:
Zhao, Xiaomei
Kuo, Wentang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kuo, Wentang', 18)}}的其他基金
Arithmetic Properties of Global Fields
全局字段的算术属性
- 批准号:
RGPIN-2020-03915 - 财政年份:2022
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Arithmetic Properties of Global Fields
全局字段的算术属性
- 批准号:
RGPIN-2020-03915 - 财政年份:2021
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Arithmetic Properties of Global Fields
全局字段的算术属性
- 批准号:
RGPIN-2020-03915 - 财政年份:2020
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Arithmetic Properties of Function Fields
函数域的算术性质
- 批准号:
RGPIN-2015-03709 - 财政年份:2018
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Arithmetic Properties of Function Fields
函数域的算术性质
- 批准号:
RGPIN-2015-03709 - 财政年份:2017
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Arithmetic Properties of Function Fields
函数域的算术性质
- 批准号:
RGPIN-2015-03709 - 财政年份:2016
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Arithmetic Properties of Function Fields
函数域的算术性质
- 批准号:
RGPIN-2015-03709 - 财政年份:2015
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Arithmetic properties of automorphic forms and Drinfeld modules
自守形式和 Drinfeld 模的算术性质
- 批准号:
288296-2009 - 财政年份:2013
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Arithmetic properties of automorphic forms and Drinfeld modules
自守形式和 Drinfeld 模的算术性质
- 批准号:
288296-2009 - 财政年份:2012
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Arithmetic properties of automorphic forms and Drinfeld modules
自守形式和 Drinfeld 模的算术性质
- 批准号:
288296-2009 - 财政年份:2011
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Elucidating mechanisms underlying multivalency modulating lectin-glycan binding and assembly properties-implications for lectin function regulation
阐明多价调节凝集素-聚糖结合和组装特性的机制-对凝集素功能调节的影响
- 批准号:
BB/Y005856/1 - 财政年份:2024
- 资助金额:
$ 1.24万 - 项目类别:
Research Grant
CAREER: Molecular Tools to Tune the Structure-Function Properties of Nanoscale Objects by Reconfiguration of pi-Conjugated Superstructures
职业:通过重新配置 pi 共轭超结构来调整纳米级物体的结构功能特性的分子工具
- 批准号:
2401869 - 财政年份:2023
- 资助金额:
$ 1.24万 - 项目类别:
Continuing Grant
Identifying correlations between the physico-chemical properties of waterpipe tobacco smoke and its impact on lung cell health, as a function of shisha flavor and smoking topography
确定水烟烟雾的物理化学特性及其对肺细胞健康的影响之间的相关性,作为水烟风味和吸烟地形的函数
- 批准号:
10652772 - 财政年份:2023
- 资助金额:
$ 1.24万 - 项目类别:
Studies of the function of membrane and soluble proteins and their biophysical properties.
研究膜和可溶性蛋白质的功能及其生物物理特性。
- 批准号:
10552333 - 财政年份:2023
- 资助金额:
$ 1.24万 - 项目类别:
Inorganic nanomaterials: Structure, properties and function
无机纳米材料:结构、性质和功能
- 批准号:
RGPIN-2016-04562 - 财政年份:2022
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Establishing the immuno-modulatory properties of dietary lipids on T cell function.
确定膳食脂质对 T 细胞功能的免疫调节特性。
- 批准号:
RGPIN-2018-05875 - 财政年份:2022
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
CRITICAL ISSUES TO ASSESS ROCK BLASTABILITY AS A FUNCTION OF GEOMECHANICAL PROPERTIES AND LOCAL CONDITIONS BASED ON TERRESTRIAL LASER SCANNER (LIDAR) SURVEYS AND NUMERICAL ANALYSES
基于地面激光扫描仪 (LIDAR) 调查和数值分析,评估岩石可爆性作为地质力学特性和当地条件的函数的关键问题
- 批准号:
RGPIN-2022-03893 - 财政年份:2022
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
CRITICAL ISSUES TO ASSESS ROCK BLASTABILITY AS A FUNCTION OF GEOMECHANICAL PROPERTIES AND LOCAL CONDITIONS BASED ON TERRESTRIAL LASER SCANNER (LIDAR) SURVEYS AND NUMERICAL ANALYSES
基于地面激光扫描仪 (LIDAR) 调查和数值分析,评估岩石可爆性作为地质力学特性和当地条件的函数的关键问题
- 批准号:
DGECR-2022-00489 - 财政年份:2022
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Launch Supplement
Mechanisms to define the structure, properties, and function of RNP biomolecular condensates
定义 RNP 生物分子缩合物的结构、性质和功能的机制
- 批准号:
22H02545 - 财政年份:2022
- 资助金额:
$ 1.24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Emergent Multi-Cellular Properties Regulating Pancreatic Islet Function
调节胰岛功能的新兴多细胞特性
- 批准号:
10297535 - 财政年份:2021
- 资助金额:
$ 1.24万 - 项目类别: