Delay, impulsive, structured and stochastic systems with applications to population dynamics

延迟、脉冲、结构化和随机系统及其在群体动态中的应用

基本信息

  • 批准号:
    RGPIN-2020-03934
  • 负责人:
  • 金额:
    $ 2.26万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

My research focuses on delay differential equations with variable parameters, their connection to discrete, impulsive and hybrid systems, and application of dynamical systems to population dynamics in heterogeneous or changing environment, as well as to the analysis of brain activity during epileptic seizures. One of the aims of the proposal is narrowing the gap between the constants for equations with continuous and measurable parameters, 3/2 for continuous compared to (1+1/e) for equations with a measurable coefficient and a measurable delay. Building on previous research on the interplay of continuous delay equations and discrete models, the study will be continued and extended to systems, with applications to neural networks with variable distributed delays. At the first step, stability of such a system will be connected to strong attractivity of a vector difference equation. At the second step, systems with infinite, not just unbounded, distributed delays will be considered, once the memory is exponentially decaying. Addition of noise can turn an unstable equilibrium into a stable one, similarly to the Kapica pendulum, which, with a "trembling" base, can be kept stable in the top (regularly, unstable) position. One of the purposes of the proposed research is to explore noisy controls which can stabilize not only unstable equilibrium points but also otherwise unstable cycles. This study will incorporate the case when a noisy deterministic control is applied, as well as control by noise only. In order to stabilize cycles, a control can be applied not at every, but on chosen steps, i.e. an impulse, or a pulse, control. Impulsive systems of both continuous and discrete type will be studied for equations with variable coefficients and, generally, distributed delays. Impulsive control and stabilization of delay differential systems are also a part of the proposed research. Exploration of the influence of various types of environment-dependent diffusion led to the conclusion that, once a population moves towards more abundant per capita resources, its habitat cannot be invaded by regularly diffusing species. Investigation of the cases when different diffusion strategies are combined with other differences in resources exploitation, or the system incorporates harvesting, is a part of the proposed research. This includes multi-species systems and the possibility of specialization in resource consumption. The most applied part of the proposal is connected with characterization of neuronal connectivity in human brains before, during, and after epileptic seizures. Successful implementation of this proposal will enhance our knowledge of delay-independent properties of systems, improve methods for stochastic stabilization of cycles of discrete maps, analyze the influence of different diffusion strategies on the evolutionary success, advance the theory of delay-dependent impulses and reveal mathematical traits of epileptic seizures.
我的研究重点是可变参数的延迟微分方程,它们与离散,脉冲和混合系统的联系,以及动力系统在异质或变化环境中的群体动力学的应用,以及癫痫发作期间大脑活动的分析。 该提案的目的之一是缩小具有连续和可测量参数的方程的常数之间的差距,与具有可测量系数和可测量延迟的方程的(1+1/e)相比,连续的是3/2。 基于以前对连续延迟方程和离散模型相互作用的研究,该研究将继续并扩展到系统,并应用于具有可变分布延迟的神经网络。在第一步,这样的系统的稳定性将连接到一个向量差分方程的强吸引性。在第二步,系统的无限,而不仅仅是无界,分布延迟将被视为,一旦记忆是指数衰减。 噪音的加入可以将不稳定的平衡变成稳定的平衡,类似于卡皮卡摆,它有一个“颤抖”的底座,可以保持稳定在顶部(有规律的,不稳定的)位置。所提出的研究的目的之一是探索噪声控制,不仅可以稳定不稳定的平衡点,但也否则不稳定的周期。这项研究将包括的情况下,噪声确定性控制,以及控制噪声。为了稳定循环,可以不是在每一步而是在选定的步骤上施加控制,即脉冲或脉冲控制。 连续和离散型的脉冲系统将被研究为具有变系数和一般分布时滞的方程。时滞微分系统的脉冲控制和镇定也是本文研究的一部分。 对各种依赖环境的扩散的影响的探索得出的结论是,一旦一个种群向人均资源更丰富的方向迁移,其栖息地就不能被定期扩散的物种入侵。调查的情况下,不同的扩散策略与其他差异相结合的资源开发,或系统采用收获,是拟议的研究的一部分。这包括多物种系统和资源消耗专业化的可能性。 该提案最适用的部分与癫痫发作之前,期间和之后人类大脑中神经元连接的表征有关。 该方案的成功实施将有助于我们加深对系统时滞无关性质的认识,改进离散映射周期的随机镇定方法,分析不同扩散策略对进化成功的影响,推进时滞依赖脉冲理论,揭示癫痫发作的数学特征.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Braverman, Elena其他文献

Continuous versus pulse harvesting for population models in constant and variable environment
  • DOI:
    10.1007/s00285-008-0169-z
  • 发表时间:
    2008-09-01
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Braverman, Elena;Mamdani, Reneeta
  • 通讯作者:
    Mamdani, Reneeta
Stochastic control stabilizing unstable or chaotic maps
Stabilization of cycles for difference equations with a noisy PF control
  • DOI:
    10.1016/j.automatica.2020.108862
  • 发表时间:
    2020-05-01
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Braverman, Elena;Diblik, Josef;Smarda, Zdenek
  • 通讯作者:
    Smarda, Zdenek
STABILIZATION OF DIFFERENCE EQUATIONS WITH NOISY PROPORTIONAL FEEDBACK CONTROL
On oscillation of differential and difference equations with non-monotone delays
  • DOI:
    10.1016/j.amc.2011.09.035
  • 发表时间:
    2011-12-01
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Braverman, Elena;Karpuz, Basak
  • 通讯作者:
    Karpuz, Basak

Braverman, Elena的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Braverman, Elena', 18)}}的其他基金

Delay, impulsive, structured and stochastic systems with applications to population dynamics
延迟、脉冲、结构化和随机系统及其在群体动态中的应用
  • 批准号:
    RGPIN-2020-03934
  • 财政年份:
    2022
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Delay, impulsive, structured and stochastic systems with applications to population dynamics
延迟、脉冲、结构化和随机系统及其在群体动态中的应用
  • 批准号:
    RGPIN-2020-03934
  • 财政年份:
    2021
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Systems with a distributed memory and applications to population dynamics
具有分布式内存的系统及其在群体动态中的应用
  • 批准号:
    RGPIN-2015-05976
  • 财政年份:
    2019
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Systems with a distributed memory and applications to population dynamics
具有分布式内存的系统及其在群体动态中的应用
  • 批准号:
    RGPIN-2015-05976
  • 财政年份:
    2018
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Systems with a distributed memory and applications to population dynamics
具有分布式内存的系统及其在群体动态中的应用
  • 批准号:
    RGPIN-2015-05976
  • 财政年份:
    2017
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Systems with a distributed memory and applications to population dynamics
具有分布式内存的系统及其在群体动态中的应用
  • 批准号:
    RGPIN-2015-05976
  • 财政年份:
    2016
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Systems with a distributed memory and applications to population dynamics
具有分布式内存的系统及其在群体动态中的应用
  • 批准号:
    RGPIN-2015-05976
  • 财政年份:
    2015
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Delay, discrete and spatial models with applications to mathematical biology
延迟、离散和空间模型及其在数学生物学中的应用
  • 批准号:
    261351-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Delay, discrete and spatial models with applications to mathematical biology
延迟、离散和空间模型及其在数学生物学中的应用
  • 批准号:
    261351-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Delay, discrete and spatial models with applications to mathematical biology
延迟、离散和空间模型及其在数学生物学中的应用
  • 批准号:
    261351-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Lagrange网络实用同步的不连续控制研究
  • 批准号:
    61603174
  • 批准年份:
    2016
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Role of intestinal serotonin transporter in post traumatic stress disorder
肠道血清素转运蛋白在创伤后应激障碍中的作用
  • 批准号:
    10590033
  • 财政年份:
    2024
  • 资助金额:
    $ 2.26万
  • 项目类别:
Neuromodulation for impulsivity and suicidality in Veterans with mildtraumatic brain injury and common co-occurring mental health conditions
神经调节对患有轻度脑损伤和常见并发心理健康状况的退伍军人的冲动和自杀倾向
  • 批准号:
    10640567
  • 财政年份:
    2023
  • 资助金额:
    $ 2.26万
  • 项目类别:
Developmental Origins of Aggressive and Impulsive Behavior
攻击性和冲动行为的发展起源
  • 批准号:
    10639422
  • 财政年份:
    2023
  • 资助金额:
    $ 2.26万
  • 项目类别:
Alcohol and Interneurons in the Prefrontal Cortex
酒精和前额皮质的中间神经元
  • 批准号:
    10567414
  • 财政年份:
    2023
  • 资助金额:
    $ 2.26万
  • 项目类别:
Policy and Training Intervention in Responsible Marijuana Sales Practices to Reduce the Risk of Selling to Intoxicated Customers
负责任的大麻销售实践的政策和培训干预,以降低向醉酒客户销售的风险
  • 批准号:
    10444728
  • 财政年份:
    2023
  • 资助金额:
    $ 2.26万
  • 项目类别:
Inhibitory Mechanisms of Negative Urgency in Adolescent Suicidal Behavior
青少年自杀行为负紧迫感的抑制机制
  • 批准号:
    10591188
  • 财政年份:
    2023
  • 资助金额:
    $ 2.26万
  • 项目类别:
GEM: Responses of Waves, Particles, and Precipitation to Solar Wind Dynamic Pressure Impulsive Changes
GEM:波、粒子和降水对太阳风动压脉冲变化的响应
  • 批准号:
    2247774
  • 财政年份:
    2023
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Standard Grant
Digital Monitoring of Impulsivity as a Proximal Risk Factor for Suicidal Outcomes
冲动作为自杀结果的近端风险因素的数字监测
  • 批准号:
    10642521
  • 财政年份:
    2023
  • 资助金额:
    $ 2.26万
  • 项目类别:
Approach Bias Retraining for Nicotine Addiction among Dual Combustible and Electronic Cigarette Users
双重可燃烟和电子烟使用者尼古丁成瘾的偏差再培训方法
  • 批准号:
    10557889
  • 财政年份:
    2022
  • 资助金额:
    $ 2.26万
  • 项目类别:
Cholinergic interneuron D2 receptor function in impulsive behavior: implications for addiction
胆碱能中间神经元 D2 受体在冲动行为中的功能:对成瘾的影响
  • 批准号:
    10651609
  • 财政年份:
    2022
  • 资助金额:
    $ 2.26万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了