TOWARD SOLUTION OF THE MULTIVARIATE CORONA PROBLEM
解决多元新冠问题
基本信息
- 批准号:RGPIN-2020-03935
- 负责人:
- 金额:$ 1.53万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of the proposed research is to find a closer link between the information encoded in the topology and analysis in the vicinity of the corona problem for the algebra H(Dn) of bounded complex analytic functions on the n-fold
direct product Dn of open unit discs, one of the major open problems of modern complex analysis. The problem asks whether Dn is dense in the maximal ideal space M(H(Dn)) of H(Dn) (i.e., in the space of nonzero complex
homomorphisms of H(Dn) equipped with a certain topology). The corona problem for H(D) was posed by Kakutani in 1941 and solved by Carleson in a famous paper of 1962. Since then the multivariate corona problem attracted a lot
of attention of complex analysts but there was little headway on it for 50 years or more. (In part because the Carleson method of the proof does not work for n 2.)
My recent work in this area proposes a new approach to the corona problem based on a new method producing bounded solutions of specific differential equations on the disc and careful analysis of the topological
structure of M(H(D)). As a result, I developed complex function theory on the maximal ideal space and in this framework proved analogs of many classical results of complex analysis (Cartan theorems, Runge approximation theorems, Grauert and Ramspott theorems) and solved several significant problems in this area such as the description of the maximal ideal space of the slice algebra, an important subalgebra of H(Dn), the completion problem for operator-valued complex analytic functions on the disc with relatively compact images (a modification of the famous Sz.-Nagy corona problem posed in 1978).
My nearer-term objective is to develop an analogous theory on the maximal ideal space of the slice algebra of bounded complex analytic functions on the direct product of certain Riemann surfaces.
Closely related to the corona problem is the problem on the topological characterization of the maximal ideal space M(H(Dn)). In my recent work I proved some fundamental results in this area for
M(H(D)). My goal is to exte
本研究的目的是在n次有界复解析函数的代数H(Dn)的电晕问题附近找到编码在拓扑中的信息与分析之间更紧密的联系
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brudnyi, Alexander其他文献
Brudnyi, Alexander的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brudnyi, Alexander', 18)}}的其他基金
TOWARD SOLUTION OF THE MULTIVARIATE CORONA PROBLEM
解决多元新冠问题
- 批准号:
RGPIN-2020-03935 - 财政年份:2022
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
TOWARD SOLUTION OF THE MULTIVARIATE CORONA PROBLEM
解决多元新冠问题
- 批准号:
RGPIN-2020-03935 - 财政年份:2021
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Algebraic and Geometric Approaches to Some Long-standing Problems of Analysis
一些长期存在的分析问题的代数和几何方法
- 批准号:
RGPIN-2015-06535 - 财政年份:2019
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Algebraic and Geometric Approaches to Some Long-standing Problems of Analysis
一些长期存在的分析问题的代数和几何方法
- 批准号:
RGPIN-2015-06535 - 财政年份:2018
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Algebraic and Geometric Approaches to Some Long-standing Problems of Analysis
一些长期存在的分析问题的代数和几何方法
- 批准号:
RGPIN-2015-06535 - 财政年份:2017
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Algebraic and Geometric Approaches to Some Long-standing Problems of Analysis
一些长期存在的分析问题的代数和几何方法
- 批准号:
RGPIN-2015-06535 - 财政年份:2016
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Algebraic and Geometric Approaches to Some Long-standing Problems of Analysis
一些长期存在的分析问题的代数和几何方法
- 批准号:
RGPIN-2015-06535 - 财政年份:2015
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Algebraic and geomatric methods in problems of analysis
分析问题中的代数和几何方法
- 批准号:
238297-2010 - 财政年份:2014
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Algebraic and geomatric methods in problems of analysis
分析问题中的代数和几何方法
- 批准号:
238297-2010 - 财政年份:2013
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Algebraic and geomatric methods in problems of analysis
分析问题中的代数和几何方法
- 批准号:
396099-2010 - 财政年份:2012
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
相似国自然基金
相似海外基金
A mobile health solution in combination with behavioral change approach to improve vaccination coverage and timeliness in Bangladesh: A cluster randomized control trial
移动健康解决方案与行为改变方法相结合,以提高孟加拉国的疫苗接种覆盖率和及时性:集群随机对照试验
- 批准号:
24K20168 - 财政年份:2024
- 资助金额:
$ 1.53万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Sustainable solution for cooling application
冷却应用的可持续解决方案
- 批准号:
10089491 - 财政年份:2024
- 资助金额:
$ 1.53万 - 项目类别:
Collaborative R&D
Low Carbon Impact AI-Enabled Net Zero Advisory Solution
低碳影响人工智能支持的净零咨询解决方案
- 批准号:
10112272 - 财政年份:2024
- 资助金额:
$ 1.53万 - 项目类别:
SME Support
SBIR Phase II: Zero Trust Solution for Precision Medicine and Precision Health Data Exchanges
SBIR 第二阶段:精准医疗和精准健康数据交换的零信任解决方案
- 批准号:
2226026 - 财政年份:2024
- 资助金额:
$ 1.53万 - 项目类别:
Cooperative Agreement
CAREER: Novel Parallelization Frameworks for Large-Scale Network Optimization with Combinatorial Requirements: Solution Methods and Applications
职业:具有组合要求的大规模网络优化的新型并行化框架:解决方法和应用
- 批准号:
2338641 - 财政年份:2024
- 资助金额:
$ 1.53万 - 项目类别:
Standard Grant
Knowledge Distillation empowered Mobile Intelligence Solution for Sustainable Management of Crop Pests and Soil Health
知识蒸馏赋能移动智能解决方案,实现农作物病虫害和土壤健康的可持续管理
- 批准号:
10092051 - 财政年份:2024
- 资助金额:
$ 1.53万 - 项目类别:
Collaborative R&D
Barking up the right trees – A microbial solution for our methane problem
树皮正确 — 解决甲烷问题的微生物解决方案
- 批准号:
DE240100338 - 财政年份:2024
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Early Career Researcher Award
Towards an Explainable, Efficient, and Reliable Federated Learning Framework: A Solution for Data Heterogeneity
迈向可解释、高效、可靠的联邦学习框架:数据异构性的解决方案
- 批准号:
24K20848 - 财政年份:2024
- 资助金额:
$ 1.53万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Sustainable Remanufacturing solution with increased automation and recycled content in laser and plasma based process (RESTORE)
可持续再制造解决方案,在基于激光和等离子的工艺中提高自动化程度和回收内容(RESTORE)
- 批准号:
10112149 - 财政年份:2024
- 资助金额:
$ 1.53万 - 项目类别:
EU-Funded
Enviro: a novel colouring solution to unlock sustainable lightweight advanced composite materials
Enviro:一种新颖的着色解决方案,可释放可持续的轻质先进复合材料
- 批准号:
10093708 - 财政年份:2024
- 资助金额:
$ 1.53万 - 项目类别:
Collaborative R&D