Infusing Artificial Intelligence into Requirements Quality Assurance
将人工智能融入需求质量保证
基本信息
- 批准号:RGPIN-2020-03991
- 负责人:
- 金额:$ 2.91万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Requirements capture the desired characteristics, functions, and properties of a proposed system. If left unaddressed, defects in requirements may ripple through the entire development process, potentially leading to cost overruns, poorly built systems, and project failures. To mitigate against and identify requirements defects as early as possible, systematic measures are necessary for requirements quality assurance (RQA). In systems and software engineering, RQA refers to procedures and activities aiming to ensure that the requirements of a system meet the desired quality attributes, for example, completeness and unambiguity. For complex systems, a fully manual approach to RQA would not only be expensive but also error--prone. Automated support for RQA is thus important.
Despite the existing research, major challenges remain in RQA automation. A first set of challenges relates to the ubiquitous use of natural language (NL) in requirements documents. NL does not lend itself easily to automation, and further, leaves ample room for quality issues to occur. Currently, several key RQA activities for NL requirements, for example, ambiguity detection and completeness checking have little automated support. Similarly, automation is scarce for transforming NL requirements into models that can be used for simulation and testing purposes. A second set of challenges is posed by the fact that systems increasingly have to comply with standards, laws, and regulations. This makes an explicit treatment of legal requirements paramount to minimize the risk of non--compliance. To date, little research has been directed at providing automated assistance for ensuring the quality of legal requirements.
The research will devise novel automated support for RQA with an emphasis on applicability in industrial settings. The main hypothesis underlying the research is that recent advances in artificial intelligence can dramatically increase the accuracy and reduce the effort associated with some difficult RQA tasks. The research will employ a combination of natural language processing and machine learning for extracting structured information from NL requirements and classifying this information. The research will further capitalize on model-driven engineering for representing and analyzing the structured information extracted from NL requirements as well as for characterizing the legal provisions against which the quality of legal requirements needs be checked.
The research is expected to (1) lead to major cost savings in quality assurance and increased confidence in the dependability of software--intensive systems, and (2) give the Canadian industry a competitive advantage in developing systems and software quality improvement tools. As importantly, the research will provide an ideal context for training highly qualified personnel with in--depth expertise in software engineering and applied AI, and capable of fulfilling the needs of research, society and the economy.
需求捕获了所提议系统的期望特性、功能和属性。如果不加以解决,需求中的缺陷可能会涟漪整个开发过程,潜在地导致成本超支、构建不良的系统和项目失败。为了尽可能早地缓解和识别需求缺陷,系统化的需求质量保证(RQA)措施是必要的。在系统和软件工程中,RQA是指旨在确保系统的需求满足所需质量属性(例如完整性和明确性)的过程和活动。对于复杂的系统,完全手动的RQA方法不仅昂贵,而且容易出错。因此,对RQA的自动化支持非常重要。
尽管现有的研究,主要的挑战仍然存在于RQA自动化。第一组挑战涉及需求文档中自然语言(NL)的普遍使用。NL不容易实现自动化,而且为质量问题的发生留下了足够的空间。目前,NL需求的几个关键RQA活动,例如,歧义检测和完整性检查几乎没有自动化支持。类似地,自动化很少用于将NL需求转换为可用于仿真和测试目的的模型。第二组挑战是系统越来越多地必须遵守标准、法律和法规。这使得明确处理法律的要求对于最大限度地减少不遵守的风险至关重要。迄今为止,很少有研究针对提供自动化的援助,以确保质量的法律的要求。
该研究将为RQA设计新的自动化支持,重点是在工业环境中的适用性。这项研究的主要假设是,人工智能的最新进展可以显着提高准确性,并减少与一些困难的RQA任务相关的工作。该研究将采用自然语言处理和机器学习相结合的方法,从NL要求中提取结构化信息并对这些信息进行分类。研究将进一步利用模型驱动工程来表示和分析从NL要求中提取的结构化信息,以及表征法律的规定,以检查法律的要求的质量。
预计这项研究将(1)导致质量保证方面的重大成本节约,并提高对软件密集型系统可靠性的信心,(2)使加拿大工业在开发系统和软件质量改进工具方面具有竞争优势。同样重要的是,这项研究将为培养高素质的人才提供理想的环境,这些人才在软件工程和应用人工智能方面具有深入的专业知识,能够满足研究,社会和经济的需求。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sabetzadeh, Mehrdad其他文献
Automated Checking of Conformance to Requirements Templates Using Natural Language Processing
- DOI:
10.1109/tse.2015.2428709 - 发表时间:
2015-10-01 - 期刊:
- 影响因子:7.4
- 作者:
Arora, Chetan;Sabetzadeh, Mehrdad;Zimmer, Frank - 通讯作者:
Zimmer, Frank
Automated Extraction and Clustering of Requirements Glossary Terms
- DOI:
10.1109/tse.2016.2635134 - 发表时间:
2017-10-01 - 期刊:
- 影响因子:7.4
- 作者:
Arora, Chetan;Sabetzadeh, Mehrdad;Zimmer, Frank - 通讯作者:
Zimmer, Frank
An Active Learning Approach for Improving the Accuracy of Automated Domain Model Extraction
- DOI:
10.1145/3293454 - 发表时间:
2019-02-01 - 期刊:
- 影响因子:4.4
- 作者:
Arora, Chetan;Sabetzadeh, Mehrdad;Briand, Lionel - 通讯作者:
Briand, Lionel
A relationship-based approach to model integration
- DOI:
10.1007/s11334-011-0155-2 - 发表时间:
2012-03-01 - 期刊:
- 影响因子:1.2
- 作者:
Chechik, Marsha;Nejati, Shiva;Sabetzadeh, Mehrdad - 通讯作者:
Sabetzadeh, Mehrdad
The Case for Context-Driven Software Engineering Research Generalizability Is Overrated
- DOI:
10.1109/ms.2017.3571562 - 发表时间:
2017-09-01 - 期刊:
- 影响因子:3.3
- 作者:
Briand, Lionel;Bianculli, Domenico;Sabetzadeh, Mehrdad - 通讯作者:
Sabetzadeh, Mehrdad
Sabetzadeh, Mehrdad的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sabetzadeh, Mehrdad', 18)}}的其他基金
Infusing Artificial Intelligence into Requirements Quality Assurance
将人工智能融入需求质量保证
- 批准号:
RGPAS-2020-00076 - 财政年份:2022
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Infusing Artificial Intelligence into Requirements Quality Assurance
将人工智能融入需求质量保证
- 批准号:
RGPIN-2020-03991 - 财政年份:2022
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Infusing Artificial Intelligence into Requirements Quality Assurance
将人工智能融入需求质量保证
- 批准号:
RGPIN-2020-03991 - 财政年份:2021
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
AI-enabled, self-adaptive software-defined networking for the Small Office and Home Office (SOHO)
适用于小型办公室和家庭办公室 (SOHO) 的人工智能自适应软件定义网络
- 批准号:
566676-2021 - 财政年份:2021
- 资助金额:
$ 2.91万 - 项目类别:
Alliance Grants
Infusing Artificial Intelligence into Requirements Quality Assurance
将人工智能融入需求质量保证
- 批准号:
RGPAS-2020-00076 - 财政年份:2021
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Infusing Artificial Intelligence into Requirements Quality Assurance
将人工智能融入需求质量保证
- 批准号:
RGPAS-2020-00076 - 财政年份:2020
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Infusing Artificial Intelligence into Requirements Quality Assurance
将人工智能融入需求质量保证
- 批准号:
DGECR-2020-00260 - 财政年份:2020
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Launch Supplement
Model Management for Requirements and Design
需求和设计的模型管理
- 批准号:
357919-2008 - 财政年份:2008
- 资助金额:
$ 2.91万 - 项目类别:
Postdoctoral Fellowships
相似海外基金
I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
- 批准号:
2409130 - 财政年份:2024
- 资助金额:
$ 2.91万 - 项目类别:
Standard Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
- 批准号:
2414141 - 财政年份:2024
- 资助金额:
$ 2.91万 - 项目类别:
Standard Grant
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:CyberAI:利用人工智能实现智能系统的网络安全解决方案
- 批准号:
2349104 - 财政年份:2024
- 资助金额:
$ 2.91万 - 项目类别:
Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
- 批准号:
2342384 - 财政年份:2024
- 资助金额:
$ 2.91万 - 项目类别:
Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343607 - 财政年份:2024
- 资助金额:
$ 2.91万 - 项目类别:
Standard Grant
Artificial intelligence in education: Democratising policy
教育中的人工智能:政策民主化
- 批准号:
DP240100602 - 财政年份:2024
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Projects
Reassessing the Appropriateness of currently-available Data-set Protection Levers in the era of Artificial Intelligence
重新评估人工智能时代现有数据集保护手段的适用性
- 批准号:
23K22068 - 财政年份:2024
- 资助金额:
$ 2.91万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
- 批准号:
10093095 - 财政年份:2024
- 资助金额:
$ 2.91万 - 项目类别:
Collaborative R&D
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
- 批准号:
10106704 - 财政年份:2024
- 资助金额:
$ 2.91万 - 项目类别:
EU-Funded
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
- 批准号:
MR/Y009657/1 - 财政年份:2024
- 资助金额:
$ 2.91万 - 项目类别:
Fellowship