Mass transfers and Optimal Stochastic Transports
质量传递和最优随机传递
基本信息
- 批准号:RGPIN-2020-04248
- 负责人:
- 金额:$ 3.5万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
There are three main thrusts to my research proposal. The first is a relatively new direction focused on stochastic optimal transport problems and the theory of dynamical mean field games with free end-time. The second is an asymptotic theory of mass transfers, an encompassing concept introduced recently by the applicant, while the third is a continuation of my long-term research project on borderline elliptic boundary value problems involving the Hardy-Schrodinger operator.
The theory of optimal martingale mass transport originated in mathematical finance and is now well understood in the one-dimensional case, where it models the evolution of the price of only one stock. However, open questions abound in the higher dimensional case, i.e., for “multi-stock” models, where the problems are much more challenging. The case of Brownian martingales is particularly interesting as it connects these topics to problems of optimal stopping of Brownian motion and the classical theory of Skorokhod embeddings. This in turn leads to the relatively new direction of optimal stochastic transportation with free end time, where the optimization is over stopping times and processes with prescribed end distributions.
The Eulerian formulation of stochastic mass transport theory is closely connected to the theory of mean field games, which originated independently in economics, engineering, and mathematical analysis. This topic can be loosely described as the study of strategic decision-making in very large populations of small interacting agents. Mathematically, it can be described as a limit of a multi-player Nash equilibrium as the number of players becomes very large. Mean field games with fixed end times have been the subject of intensive investigations in recent years. However, mean field games with free end time have only been considered in a few simple examples and our focus will be on this case which contains new phenomena that have not been captured by previous models.
Another related set of problems stems from the general theory of mass transfers and the asymptotic properties of their associated non-linear Kantorovich operators. Natural connections to large deviation theory, as well as applications to symbolic dynamics are being developed. The non-trivial extensions to a non-compact setting will be actively pursued. A theory of multilinear transfers between several probability distributions -as opposed to pairs- is also under development.
A long-term research project of the proposer and his collaborators has been concerned with the fine analysis of second order Hardy-Schrodinger operators on domains in Euclidean space, when the singularity (zero) lies either on the boundary of the domains under study or in their interior. The next phase will focus on issues of existence, multiplicity and qualitative properties of solutions of PDEs involving Hardy-Schrodinger operators on hyperbolic manifolds, as well as their fractional counterparts.
我的研究计划主要有三个方面。第一个是一个相对较新的方向集中在随机最优运输问题和理论的动态平均场游戏与自由结束时间。第二个是一个渐进理论的质量转移,一个包容的概念最近介绍的申请人,而第三个是我的长期研究项目的延续边界椭圆边值问题,涉及哈迪-薛定谔算子。
最优鞅质量传输理论起源于数学金融学,现在在一维情况下得到了很好的理解,在一维情况下,它只模拟了一只股票的价格演变。然而,在更高维的情况下,开放的问题比比皆是,即,对于"多库存"模型,问题更具挑战性。布朗鞅的情况下是特别有趣的,因为它连接这些主题的问题,最佳停止布朗运动和经典理论的Skorokhod嵌入。这反过来又导致了相对较新的方向,最佳的随机运输与自由结束时间,其中的优化是在停止时间和过程与规定的结束分布。
随机质量输运理论的欧拉公式与平均场博弈理论密切相关,后者独立起源于经济学、工程学和数学分析。这一主题可以被松散地描述为在非常大的人口的小互动代理的战略决策的研究。在数学上,它可以被描述为多玩家纳什均衡的极限,因为玩家的数量变得非常大。具有固定结束时间的平均场博弈近年来一直是深入研究的主题。然而,平均场游戏与自由结束时间只被认为是在几个简单的例子,我们的重点将是在这种情况下,它包含了新的现象,还没有被以前的模型。
另一组相关的问题源于质量传递的一般理论及其相关的非线性Kantorovich算子的渐近性质。大偏差理论的自然联系,以及符号动力学的应用正在开发中。将积极寻求非紧凑设置的非平凡扩展。一个理论的多线性转移之间的几个概率分布-而不是对-也正在发展中。
本文作者及其合作者的一个长期研究项目是对欧氏空间中区域上二阶Hardy-Schrodinger算子的精细分析,当奇点(零)位于所研究区域的边界或内部时。下一阶段将集中在双曲流形上涉及Hardy-Schrodinger算子的偏微分方程解的存在性,多重性和定性性质的问题,以及他们的分数对应。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ghoussoub, Nassif其他文献
STRUCTURE OF OPTIMAL MARTINGALE TRANSPORT PLANS IN GENERAL DIMENSIONS
- DOI:
10.1214/18-aop1258 - 发表时间:
2019-01-01 - 期刊:
- 影响因子:2.3
- 作者:
Ghoussoub, Nassif;Kim, Young-Heon;Lim, Tongseok - 通讯作者:
Lim, Tongseok
Bessel pairs and optimal Hardy and Hardy-Rellich inequalities
- DOI:
10.1007/s00208-010-0510-x - 发表时间:
2011-01-01 - 期刊:
- 影响因子:1.4
- 作者:
Ghoussoub, Nassif;Moradifam, Amir - 通讯作者:
Moradifam, Amir
On the best possible remaining term in the Hardy inequality
- DOI:
10.1073/pnas.0803703105 - 发表时间:
2008-09-16 - 期刊:
- 影响因子:11.1
- 作者:
Ghoussoub, Nassif;Moradifam, Amir - 通讯作者:
Moradifam, Amir
Ghoussoub, Nassif的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ghoussoub, Nassif', 18)}}的其他基金
Mass transfers and Optimal Stochastic Transports
质量传递和最优随机传递
- 批准号:
RGPIN-2020-04248 - 财政年份:2022
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Mass transfers and Optimal Stochastic Transports
质量传递和最优随机传递
- 批准号:
RGPIN-2020-04248 - 财政年份:2021
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Mass transport, Geometric inequalities and partial differential systems
质量传递、几何不等式和偏微分系统
- 批准号:
RGPIN-2015-03951 - 财政年份:2019
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Mass transport, Geometric inequalities and partial differential systems
质量传递、几何不等式和偏微分系统
- 批准号:
RGPIN-2015-03951 - 财政年份:2018
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Banff International Research Station
班夫国际研究站
- 批准号:
245746-2015 - 财政年份:2018
- 资助金额:
$ 3.5万 - 项目类别:
Thematic Resources Support in Mathematics and Statistics
Banff International Research Station
班夫国际研究站
- 批准号:
245746-2015 - 财政年份:2017
- 资助金额:
$ 3.5万 - 项目类别:
Thematic Resources Support in Mathematics and Statistics
Mass transport, Geometric inequalities and partial differential systems
质量传递、几何不等式和偏微分系统
- 批准号:
RGPIN-2015-03951 - 财政年份:2017
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Banff International Research Station
班夫国际研究站
- 批准号:
245746-2015 - 财政年份:2016
- 资助金额:
$ 3.5万 - 项目类别:
Thematic Resources Support in Mathematics and Statistics
Mass transport, Geometric inequalities and partial differential systems
质量传递、几何不等式和偏微分系统
- 批准号:
RGPIN-2015-03951 - 财政年份:2016
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Banff International Research Station
班夫国际研究站
- 批准号:
245746-2010 - 财政年份:2015
- 资助金额:
$ 3.5万 - 项目类别:
Major Resources Support Program - Infrastructure
相似海外基金
Scholarships, Academic, and Social Supports to Provide Low-Income Transfers Students Opportunities for Nurtured Growth in AI
奖学金、学术和社会支持为低收入转学生提供促进人工智能发展的机会
- 批准号:
2321986 - 财政年份:2024
- 资助金额:
$ 3.5万 - 项目类别:
Continuing Grant
CC* Integration-Small: Enhancing Data Transfers by Enabling Programmability and Closed-loop Control in a Non-programmable Science DMZ
CC* Integration-Small:通过在不可编程科学 DMZ 中启用可编程性和闭环控制来增强数据传输
- 批准号:
2346726 - 财政年份:2024
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
Engineering T cells to overcome inhibitory receptor signals that limit the efficacy of adoptive cell therapy against ovarian cancer
改造 T 细胞以克服抑制性受体信号,这些信号限制了过继性细胞疗法对卵巢癌的疗效
- 批准号:
10526155 - 财政年份:2023
- 资助金额:
$ 3.5万 - 项目类别:
Minimum wages, taxes and transfers, and low-income workers
最低工资、税收和转移支付以及低收入工人
- 批准号:
ES/X008339/1 - 财政年份:2023
- 资助金额:
$ 3.5万 - 项目类别:
Research Grant
Collaborative Research: OAC Core: Small: Anomaly Detection and Performance Optimization for End-to-End Data Transfers at Scale
协作研究:OAC 核心:小型:大规模端到端数据传输的异常检测和性能优化
- 批准号:
2412329 - 财政年份:2023
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
Time to ATTAC: Adoptive Transfer of T cells Against gp100+ Cells to treat LAM
ATTAC 时间:针对 gp100 细胞的 T 细胞过继转移来治疗 LAM
- 批准号:
10682121 - 财政年份:2023
- 资助金额:
$ 3.5万 - 项目类别:
Induction of autosis to overcome resistance in adoptive cell therapy for solid tumors
诱导自体死亡以克服实体瘤过继细胞治疗中的耐药性
- 批准号:
10629835 - 财政年份:2023
- 资助金额:
$ 3.5万 - 项目类别:
The role of epigenetic regulator UHRF1 in stability of induced regulatory T-cell function during influenza A virus-induced lung injury
表观遗传调节因子 UHRF1 在甲型流感病毒诱导的肺损伤过程中诱导调节 T 细胞功能稳定性中的作用
- 批准号:
10389878 - 财政年份:2023
- 资助金额:
$ 3.5万 - 项目类别:
Engineered TCR-Treg Cell Therapies Targeting Type 1 Diabetes Autoantigens
针对 1 型糖尿病自身抗原的工程化 TCR-Treg 细胞疗法
- 批准号:
10764143 - 财政年份:2023
- 资助金额:
$ 3.5万 - 项目类别:
Identification of Novel Epigenetic Regulators of lymphocyte Development
淋巴细胞发育的新型表观遗传调节因子的鉴定
- 批准号:
10723159 - 财政年份:2023
- 资助金额:
$ 3.5万 - 项目类别: