Sequential decision making under uncertainty: fundamental limits and applications
不确定性下的序贯决策:基本限制和应用
基本信息
- 批准号:RGPIN-2020-04256
- 负责人:
- 金额:$ 1.31万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Sequential decision making (SDM) is an interactive process between a sequence of actions and observations: at each time, an action is taken by a decision-maker based on past data, which in turn affects the distribution of future observations. The problem is to come up with a strategy of selecting actions to achieve an overall objective, such as reaching a reliable conclusion as fast as possible, maximizing the cumulative rewards, etc. SDM tasks arise in a range of applications from different areas, including signal processing, clinical trials, personalized medicine, intelligent tutoring systems, online advertising, and recommendation systems, for which we aim to understand the fundamental limits and propose matching algorithms that are also computationally efficient. The major challenge is the complex dependence structure among observations induced by adaptive actions, which calls for a different set of tools than those for static data analysis. In this proposal, we investigate three themes in SDM with different formulations and applications.
The first theme is on testing multiple hypotheses based on streaming data. In its simplest form, a decision-maker evaluates data as they arrive, and stops the sampling process until the evidence is strong enough for solving all the hypotheses. The goal is to minimize the sampling cost, while controlling error rates in some family-wise sense. We will also study the case where there exist sampling constraints (such as each time only a limited number streams can be observed) and/or different streams can have a separate stopping time. The second theme is on influencing and fast detecting a change-point. Motivated by applications such as online education, for which the goal is to actively help students master skills over time by adaptively administering educational items, we will consider a framework where the aim is to accelerate a hidden change, and then detect it as soon as possible, subject to false alarm constraint. The online procedures usually assume the knowledge of the dynamics, and we will also study the problem of offline model estimation. The third theme is on contextual bandit problem. Consider multiple treatments for a disease, whose efficacy depends on patients' characteristics (context), such as genes. As a new patient arrives, based on the context and past knowledge, the doctor needs to select a treatment, of which the outcome is observed. The goal is to minimize the regret against an oracle, who knows how the outcome depends on context and treatment. We will particularly consider the case where the context is high dimensional.
The expected research outcomes will significantly advance the understanding and practice of SDM. We will document research results in top journals and incorporate the methodology into publicly released software such as R. This program will create and integrate educational opportunities for HQP, and support the training of 3 PhD students, 3 MSc students, and 2 USRAs.
序贯决策(SDM)是一系列行动和观测之间的交互过程:在每一个时刻,决策者根据过去的数据采取行动,这反过来又影响未来观测的分布。问题是要想出一个选择行动的策略,以实现一个整体目标,如尽可能快地得出一个可靠的结论,最大化累积奖励等SDM任务出现在一系列应用程序从不同的领域,包括信号处理,临床试验,个性化医疗,智能辅导系统,在线广告和推荐系统,为此,我们的目标是了解基本的限制,并提出匹配算法,也是计算效率。主要的挑战是由自适应行为引起的观测之间的复杂依赖结构,这需要一套不同于静态数据分析的工具。在这个建议中,我们调查三个主题在SDM与不同的配方和应用。
第一个主题是基于流数据测试多个假设。在最简单的形式中,决策者在数据到达时对其进行评估,并停止采样过程,直到证据足够强大,足以解决所有假设。我们的目标是尽量减少抽样成本,同时在某种意义上控制错误率。我们还将研究存在采样约束(例如每次只能观察到有限数量的流)和/或不同流可以具有单独的停止时间的情况。第二个主题是影响和快速检测一个变化点。受在线教育等应用程序的启发,其目标是通过自适应管理教育项目来积极帮助学生随着时间的推移掌握技能,我们将考虑一个框架,其目的是加速隐藏的变化,然后尽快检测到它,受到虚警约束。在线程序通常假设的动态知识,我们也将研究离线模型估计的问题。第三个主题是语境强盗问题。考虑对一种疾病进行多种治疗,其疗效取决于患者的特征(背景),如基因。当一个新的病人到达时,根据背景和过去的知识,医生需要选择一种治疗方法,并观察其结果。我们的目标是尽量减少对神谕的遗憾,谁知道结果如何取决于上下文和治疗。我们将特别考虑上下文是高维的情况。
预期的研究成果将大大促进对可持续发展机制的理解和实践。我们将在顶级期刊上记录研究结果,并将该方法纳入公开发布的软件,如R。该计划将为HQP创造和整合教育机会,并支持3名博士生,3名硕士生和2名USRA的培训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Song, Yanglei其他文献
Sequential multiple testing with generalized error control: An asymptotic optimality theory
具有广义误差控制的顺序多重测试:渐近最优理论
- DOI:
10.1214/18-aos1737 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Song, Yanglei;Fellouris, Georgios - 通讯作者:
Fellouris, Georgios
Stratified incomplete local simplex tests for curvature of nonparametric multiple regression
非参数多元回归曲率的分层不完全局部单纯形检验
- DOI:
10.3150/22-bej1459 - 发表时间:
2023 - 期刊:
- 影响因子:1.5
- 作者:
Song, Yanglei;Chen, Xiaohui;Kato, Kengo - 通讯作者:
Kato, Kengo
Approximating high-dimensional infinite-order $U$-statistics: Statistical and computational guarantees
近似高维无限阶 $U$-统计:统计和计算保证
- DOI:
10.1214/19-ejs1643 - 发表时间:
2019 - 期刊:
- 影响因子:1.1
- 作者:
Song, Yanglei;Chen, Xiaohui;Kato, Kengo - 通讯作者:
Kato, Kengo
Scalable Topical Phrase Mining from Text Corpora
- DOI:
10.14778/2735508.2735519 - 发表时间:
2014-11-01 - 期刊:
- 影响因子:2.5
- 作者:
El-Kishky, Ahmed;Song, Yanglei;Han, Jiawei - 通讯作者:
Han, Jiawei
Song, Yanglei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Song, Yanglei', 18)}}的其他基金
Sequential decision making under uncertainty: fundamental limits and applications
不确定性下的序贯决策:基本限制和应用
- 批准号:
RGPIN-2020-04256 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Sequential decision making under uncertainty: fundamental limits and applications
不确定性下的序贯决策:基本限制和应用
- 批准号:
RGPIN-2020-04256 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Sequential decision making under uncertainty: fundamental limits and applications
不确定性下的序贯决策:基本限制和应用
- 批准号:
DGECR-2020-00337 - 财政年份:2020
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Launch Supplement
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
补偿性还是非补偿性规则:探析风险决策的行为与神经机制
- 批准号:31170976
- 批准年份:2011
- 资助金额:64.0 万元
- 项目类别:面上项目
基于神经营销学方法的品牌延伸认知与决策研究
- 批准号:70772048
- 批准年份:2007
- 资助金额:20.0 万元
- 项目类别:面上项目
相似海外基金
CRII: CIF: Sequential Decision-Making Algorithms for Efficient Subset Selection in Multi-Armed Bandits and Optimization of Black-Box Functions
CRII:CIF:多臂老虎机中高效子集选择和黑盒函数优化的顺序决策算法
- 批准号:
2246187 - 财政年份:2023
- 资助金额:
$ 1.31万 - 项目类别:
Standard Grant
The Natural History of Overall Mortality with Diagnosed Symptomatic Gallstone Disease in the United States: A Sequential Mixed-methods Study Evaluating Emergency, Non-emergency, and No Cholecystectomy
美国诊断有症状胆结石病的总体死亡率的自然史:一项评估紧急、非紧急和不进行胆囊切除术的序贯混合方法研究
- 批准号:
10664339 - 财政年份:2023
- 资助金额:
$ 1.31万 - 项目类别:
P1: Sources and Mechanisms of Sequential Activity
P1:顺序活动的来源和机制
- 批准号:
10705963 - 财政年份:2023
- 资助金额:
$ 1.31万 - 项目类别:
Optimizing Telehealth-delivery of a Weight Loss Intervention in Older Adults with Multiple Chronic Conditions: A Sequential, Multiple Assignment, Randomized Trial
优化对患有多种慢性病的老年人进行远程医疗的减肥干预:一项序贯、多项分配、随机试验
- 批准号:
10583917 - 财政年份:2023
- 资助金额:
$ 1.31万 - 项目类别:
Sequential Decision Making with Imperfect Information: Machine Learning and Information Theory
不完美信息的顺序决策:机器学习和信息论
- 批准号:
23K17547 - 财政年份:2023
- 资助金额:
$ 1.31万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Sequential Modeling for Prediction of Periodontal Diseases: an intra-Collaborative Practice-based Research study (ICPRS)
牙周病预测的序列模型:基于内部协作实践的研究 (ICPRS)
- 批准号:
10755010 - 财政年份:2023
- 资助金额:
$ 1.31万 - 项目类别:
Construction of Large-Scale Sequential Decision-Making Methods Leveraging Structures
利用结构构建大规模顺序决策方法
- 批准号:
23K19986 - 财政年份:2023
- 资助金额:
$ 1.31万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Collaborative Research: NSF-CSIRO: Fair Sequential Collective Decision-Making
合作研究:NSF-CSIRO:公平顺序集体决策
- 批准号:
2303000 - 财政年份:2023
- 资助金额:
$ 1.31万 - 项目类别:
Standard Grant
Collaborative Research: NSF-CSIRO: Fair Sequential Collective Decision-Making
合作研究:NSF-CSIRO:公平顺序集体决策
- 批准号:
2302999 - 财政年份:2023
- 资助金额:
$ 1.31万 - 项目类别:
Standard Grant
Collaborative Research: Towards the Foundation of Approximate Sampling-Based Exploration in Sequential Decision Making
协作研究:为顺序决策中基于近似采样的探索奠定基础
- 批准号:
2323113 - 财政年份:2023
- 资助金额:
$ 1.31万 - 项目类别:
Standard Grant














{{item.name}}会员




