Adaptive electromagnetic metamaterial structures for emerging applications

适用于新兴应用的自适应电磁超材料结构

基本信息

  • 批准号:
    RGPIN-2020-05457
  • 负责人:
  • 金额:
    $ 2.04万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Communication Technology is a key federal government priority; by 2030 every Canadian will have access to universal high-speed internet. To achieve this, large investments in high-bandwidth 5G network technologies and low-earth orbit satellite technologies are being made. This research will support 5G and satellite technology by using the emerging science and technology of electromagnetic metasurfaces to reduce the latency, complexity, and cost of steerable and reconfigurable antennas, thus allowing transmission at significantly higher data rates with less interference. Widespread use of such disruptive technology will be possible not only in 5G and satellite networks, but also in automotive radar, biomedical imaging, and sensing applications. The program's long-term objective is to carry out innovative research in the area of adaptive electromagnetic structures based on metamaterial technology. In the short term, the research will focus on three main themes. The first theme is to develop compact reconfigurable metamaterial antennas and devices for next-generation broadband wireless communication systems. These will be placed on realistic platforms (e.g., mobile phones, tablets), and will be reconfigurable based on the demands of adaptive 5G networks. The second theme is to develop adaptive reconfigurable metasurfaces for the implementation of beam steering and absorption functionalities. Novel methods to reconfigure the adaptive metasurfaces will be investigated, including electronic, photonic and microfluidic techniques, with the end goal of producing optimal reconfigurable control networks for each case. The third theme is to develop compact and highly-efficient metamaterial and metasurface antennas suitable for implantable and wearable devices that form a part of larger bio-sensory networks. Critical to the success of the proposed research is the recruitment and training of HQP in an equitable and inclusive environment. A total of seven students will be employed in this program, who will have the opportunity to develop specialized skills in advanced RF technology which are highly valued and transferrable directly to industry. These skills include advanced electromagnetic methods; specialized antenna, microwave and photonic circuit design; advanced fabrication methods; and industry-standard testing and measurement techniques. These HQP will be uniquely suited to pursue RF engineering careers at Canadian companies developing telecommunications infrastructure, aerospace systems, biomedical devices, and internet-of-things (IoT) devices, where they will make significant contributions to the growing competitiveness and innovation capacity of the Canadian RF technology sector.
通信技术是联邦政府的一个关键优先事项;到2030年,每个加拿大人都将获得普遍的高速互联网。为了实现这一目标,正在对高带宽5G网络技术和低地球轨道卫星技术进行大量投资。这项研究将通过使用新兴的电磁元表面科学和技术来支持5G和卫星技术,以减少可操纵和可重新配置天线的延迟,复杂性和成本,从而允许以更高的数据速率传输,干扰更少。这种颠覆性技术的广泛使用不仅可以用于5G和卫星网络,还可以用于汽车雷达、生物医学成像和传感应用。 该计划的长期目标是在基于超材料技术的自适应电磁结构领域进行创新研究。在短期内,研究将集中在三个主题上。第一个主题是为下一代宽带无线通信系统开发紧凑型可重构超材料天线和器件。这些将被放置在现实的平台上(例如,移动的电话、平板电脑),并将根据自适应5G网络的需求进行重新配置。第二个主题是开发自适应可重构超表面,用于实现光束转向和吸收功能。将研究重新配置自适应元表面的新方法,包括电子,光子和微流体技术,最终目标是为每种情况产生最佳的可重构控制网络。第三个主题是开发紧凑高效的超材料和超表面天线,适用于形成更大生物传感网络一部分的可植入和可穿戴设备。 拟议的研究取得成功的关键是在公平和包容的环境中招聘和培训HQP。共有七名学生将在该计划中就业,他们将有机会发展高级射频技术的专业技能,这些技术具有高度价值,可直接转移到工业领域。这些技能包括先进的电磁方法;专业天线,微波和光子电路设计;先进的制造方法;以及行业标准的测试和测量技术。这些HQP将特别适合在加拿大公司从事射频工程职业,开发电信基础设施,航空航天系统,生物医学设备和物联网(IoT)设备,他们将为加拿大射频技术部门不断增长的竞争力和创新能力做出重大贡献。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Antoniades, Marco其他文献

Antoniades, Marco的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Antoniades, Marco', 18)}}的其他基金

Adaptive electromagnetic metamaterial structures for emerging applications
适用于新兴应用的自适应电磁超材料结构
  • 批准号:
    RGPIN-2020-05457
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Adaptive electromagnetic metamaterial structures for emerging applications
适用于新兴应用的自适应电磁超材料结构
  • 批准号:
    RGPIN-2020-05457
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

电磁作用下蛋白质分离行为的研究
  • 批准号:
    20976119
  • 批准年份:
    2009
  • 资助金额:
    38.0 万元
  • 项目类别:
    面上项目
基于电阻层析成象和电磁流量计融合的两相流检测研究
  • 批准号:
    60772044
  • 批准年份:
    2007
  • 资助金额:
    8.0 万元
  • 项目类别:
    面上项目

相似海外基金

Metamaterial-Based Two-Dimensional Universal Electromagnetic Bandgap Structures
基于超材料的二维通用电磁带隙结构
  • 批准号:
    575606-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Adaptive electromagnetic metamaterial structures for emerging applications
适用于新兴应用的自适应电磁超材料结构
  • 批准号:
    RGPIN-2020-05457
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Adaptive electromagnetic metamaterial structures for emerging applications
适用于新兴应用的自适应电磁超材料结构
  • 批准号:
    RGPIN-2020-05457
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Millimetre-wave Filters Employing Metamaterial-Based Electromagnetic Bandgap Structures
采用基于超材料的电磁带隙结构的毫米波滤波器
  • 批准号:
    554715-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    University Undergraduate Student Research Awards
Smart electromagnetic reflector based on metamaterial technology
基于超材料技术的智能电磁反射器
  • 批准号:
    556915-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Idea to Innovation
Electromagnetic-wave storage in a metamaterial by dynamic modulation of BIC states
通过动态调制 BIC 状态在超材料中存储电磁波
  • 批准号:
    20K05360
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Low noise and high efficiency of metamaterial antennas using electromagnetic noise quantification method
利用电磁噪声量化方法实现低噪声、高效率的超材料天线
  • 批准号:
    19J14259
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development and quantitative interpretation of acoustic and phoxonic metamaterial devices from kHz to GHz frequencies
kHz 至 GHz 频率的声学和磷声超材料器件的开发和定量解释
  • 批准号:
    19H05619
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Metamaterial-Enabled magnetic Resonance Imaging Enhancement
超材料磁共振成像增强
  • 批准号:
    9923694
  • 财政年份:
    2018
  • 资助金额:
    $ 2.04万
  • 项目类别:
Novel Metamaterial Electromagnetic Sources
新型超材料电磁源
  • 批准号:
    1972719
  • 财政年份:
    2017
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了