Measures, orbital integrals, and counting points.
测量、轨道积分和计数点。
基本信息
- 批准号:RGPIN-2020-04351
- 负责人:
- 金额:$ 2.26万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Broadly speaking, this proposal aims to contribute to our understanding of the Langlands programme, and more specifically, the geometric side of Arthur's Trace Formula, using a uniform geometric approach to measures that arise on p-adic manifolds.
Until recently, my research has been largely motivated by a long-term project of applications of motivic integration to the representation theory of p--adic groups.
Motivic integration is a theory based initially on algebraic geometry and, more recently, on formal logic and model theory, that allows one to do integration on p--adic fields (and more generally, on the set of points of a variety over a p--adic field) in a uniform, p--independent, way. At its source is the observation that integration over the set of points of a variety over a local field can be reduced to point--counting over the residue field and summation of geometric series with base 1/p.
The same observation powers another classical idea in number theory computation of local densities, as in the Minkowski--Siegel mass formula.
In a recently completed work with Jeff Achter, Ali Altug and Luis Garcia, we have used this observation to re-express the formula by Langlands and Kottwitz for the cardinality of the isogeny class of a principally polarized ordinary abelian variety over a finite field in terms of a product of local densities, Siegel--style (the Langlands--Kottwitz formula expresses this cardinality as an adelic orbital integral). Surprisingly, some of the technical steps we had to implement (e.g., careful tracking of the normalization of measures on orbits of semisimple elements in the symplectic group) turned out to be very similar to the first steps one has to take to follow the Langlands--Frenkel--Ngo approach to the Beyond endoscopy' proposal of Langlands.
My current proposal has three complementary directions that stem from these ideas:
1. Resolving some persistent open questions remaining in the program of making harmonic analysis on p-adic groups `motivic', that was started by my Ph.D. advisor, T.C. Hales, in 1999.
2. Further advances in the project with J. Achter on Siegel--style formulas and relationships between orbital integrals and certain local densities, and
3. Trying to understand the so--called basic functions and their orbital integrals using the ideas of Igusa. This direction is still in a speculative stage, and is largely informed by conversations with W. Casselman.
从广义上讲,这一建议旨在促进我们对朗兰兹纲领的理解,更具体地说,是阿瑟迹公式的几何方面,使用统一的几何方法来测量p进流形。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gordon, Julia其他文献
The Effects of Noise and Reverberation on Listening Effort in Adults With Normal Hearing
- DOI:
10.1097/aud.0000000000000222 - 发表时间:
2016-01-01 - 期刊:
- 影响因子:3.7
- 作者:
Picou, Erin M.;Gordon, Julia;Ricketts, Todd A. - 通讯作者:
Ricketts, Todd A.
EBV Status and Thiopurine Use in Pediatric IBD
- DOI:
10.1097/mpg.0000000000001077 - 发表时间:
2016-05-01 - 期刊:
- 影响因子:2.9
- 作者:
Gordon, Julia;Ramaswami, Archana;Dubinsky, Marla - 通讯作者:
Dubinsky, Marla
Sugar ecologies: their metabolic and racial effects
- DOI:
10.1080/15528014.2019.1638123 - 发表时间:
2019-01-01 - 期刊:
- 影响因子:1
- 作者:
Hatch, Anthony Ryan;Sternlieb, Sonya;Gordon, Julia - 通讯作者:
Gordon, Julia
Gordon, Julia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gordon, Julia', 18)}}的其他基金
Measures, orbital integrals, and counting points.
测量、轨道积分和计数点。
- 批准号:
RGPIN-2020-04351 - 财政年份:2022
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Measures, orbital integrals, and counting points.
测量、轨道积分和计数点。
- 批准号:
RGPIN-2020-04351 - 财政年份:2021
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Uniform estimates and asymptotics for p-adic orbital integrals and characters
p-adic 轨道积分和特征的均匀估计和渐近
- 批准号:
RGPIN-2015-04653 - 财政年份:2019
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Uniform estimates and asymptotics for p-adic orbital integrals and characters
p-adic 轨道积分和特征的均匀估计和渐近
- 批准号:
RGPIN-2015-04653 - 财政年份:2018
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Uniform estimates and asymptotics for p-adic orbital integrals and characters
p-adic 轨道积分和特征的均匀估计和渐近
- 批准号:
477880-2015 - 财政年份:2017
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Uniform estimates and asymptotics for p-adic orbital integrals and characters
p-adic 轨道积分和特征的均匀估计和渐近
- 批准号:
RGPIN-2015-04653 - 财政年份:2017
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Uniform estimates and asymptotics for p-adic orbital integrals and characters
p-adic 轨道积分和特征的均匀估计和渐近
- 批准号:
RGPIN-2015-04653 - 财政年份:2016
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Uniform estimates and asymptotics for p-adic orbital integrals and characters
p-adic 轨道积分和特征的均匀估计和渐近
- 批准号:
RGPIN-2015-04653 - 财政年份:2015
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Uniform estimates and asymptotics for p-adic orbital integrals and characters
p-adic 轨道积分和特征的均匀估计和渐近
- 批准号:
477880-2015 - 财政年份:2015
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Motivic integration and p-adic groups
动机整合和 p-adic 组
- 批准号:
331159-2010 - 财政年份:2014
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
酶响应的中性粒细胞外泌体载药体系在眼眶骨缺损修复中的作用及机制研究
- 批准号:82371102
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
相似海外基金
Measures, orbital integrals, and counting points.
测量、轨道积分和计数点。
- 批准号:
RGPIN-2020-04351 - 财政年份:2022
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Measures, orbital integrals, and counting points.
测量、轨道积分和计数点。
- 批准号:
RGPIN-2020-04351 - 财政年份:2021
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Uniform estimates and asymptotics for p-adic orbital integrals and characters
p-adic 轨道积分和特征的均匀估计和渐近
- 批准号:
RGPIN-2015-04653 - 财政年份:2019
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Uniform estimates and asymptotics for p-adic orbital integrals and characters
p-adic 轨道积分和特征的均匀估计和渐近
- 批准号:
RGPIN-2015-04653 - 财政年份:2018
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Uniform estimates and asymptotics for p-adic orbital integrals and characters
p-adic 轨道积分和特征的均匀估计和渐近
- 批准号:
477880-2015 - 财政年份:2017
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Uniform estimates and asymptotics for p-adic orbital integrals and characters
p-adic 轨道积分和特征的均匀估计和渐近
- 批准号:
RGPIN-2015-04653 - 财政年份:2017
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Uniform estimates and asymptotics for p-adic orbital integrals and characters
p-adic 轨道积分和特征的均匀估计和渐近
- 批准号:
RGPIN-2015-04653 - 财政年份:2016
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Uniform estimates and asymptotics for p-adic orbital integrals and characters
p-adic 轨道积分和特征的均匀估计和渐近
- 批准号:
RGPIN-2015-04653 - 财政年份:2015
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Uniform estimates and asymptotics for p-adic orbital integrals and characters
p-adic 轨道积分和特征的均匀估计和渐近
- 批准号:
477880-2015 - 财政年份:2015
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Lie groups, orbital integrals, functoriality and quantum mechanics
李群、轨道积分、函子性和量子力学
- 批准号:
3166-1993 - 财政年份:1995
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual