Uniform estimates and asymptotics for p-adic orbital integrals and characters
p-adic 轨道积分和特征的均匀估计和渐近
基本信息
- 批准号:RGPIN-2015-04653
- 负责人:
- 金额:$ 1.82万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal is centered around the main theme of fine understanding of the measures that arise in the various contexts associated with the local Langlands correspondence. Our objects of study are algebraic groups and Lie algebras over non-Archimedean local fields, and the distributions that arise in their harmonic analysis. Harmonic analysis usually starts with a Haar measure on a given (locally compact) group G, which is unique up to a constant multiple. A lot of my work stems from two very basic considerations: first, the nature of the Haar measure itself, and second, the interplay between different normalizations of Haar measures that have some arithmetic significance. The present proposal is built around two projects united by these common themes.***I. MOTIVIC HARMONIC ANALYSIS. This is a continuation of the long-term project, initiated by T. Hales in 1999, of making harmonic analysis on p-adic groups `independent of p' by means of replacing the usual integration with respect to Haar measure by `motivic integration'. This allows one to treat non-Archimedean local fields and functions on them uniformly and field-independently. Initially, the main application of this approach was transfer of integral identities, such as the Fundamental Lemma, between local fields of characteristic zero and of sufficiently large positive characteristic (as in [11]). In the recent work with R. Cluckers and I. Halupczok, we proved new transfer principles for analytic properties, e.g., integrability and boundedness. This method also yields uniform in p estimates for orbital integrals, which turned out to be very useful in Number theory (cf. [34]). Proposed research aims to expand these new estimates to a larger class of functions and distributions arising in harmonic analysis on p-adic groups, including Harish-Chandra characters, leading to new applications. ***II. SIZES OF ISOGENY CLASSES. In 2003, E.-U. Gekeler studied the question "how likely is a given elliptic curve over a prime finite field to have a given number of rational points?". He gave an explicit answer based on a probabilistic heuristic that was too strong to be literally true, which appeared somewhat mysterious. In this project with J. Achter, we aim to provide an explanation for Gekeler's formula by making an explicit and very natural connection with Langlands-Kottwitz formula that expresses the size of an isogeny class of principally polarized abelian varieties in terms of an adelic orbital integral. Then we plan to extend Gekeler's computations from elliptic curves to abelian varieties. The connection of probability distributions analogous to the ones studied by Gekeler with orbital integrals allows one to ask a number of questions about their asymptotic behaviour. We hope to be able to formulate and answer some of these asymptotic questions using uniform estimates for orbital integrals from Part I of the proposal.********
这个建议是围绕着一个主题,即在与当地朗兰兹对应关系相关的各种背景下出现的措施的精细理解。我们的研究对象是非阿基米德局部域上的代数群和李代数,以及它们的调和分析中出现的分布。(局部紧)群G,它在常数倍数下是唯一的。我的很多工作源于两个非常基本的考虑:第一,哈尔测度本身的性质,第二,具有一定算术意义的哈尔测度的不同归一化之间的相互作用。本提案围绕由这些共同主题联合的两个项目而构建。* I.动机谐波分析。 这是T. Hales在1999年提出了对p-adic群进行调和分析的方法,该方法通过用motivic积分代替通常的Haar测度积分来实现。最初,这种方法的主要应用是在特征为零的局部域和具有足够大的正特征的局部域之间传递积分恒等式,如基本引理(如[11])。 在最近的工作与R。克拉克和我。Halupczok,我们证明了新的转移原理的分析性质,例如,可积性和有界性。这种方法也产生了轨道积分的一致p估计,这在数论中非常有用(参见。[34])。拟议的研究旨在将这些新的估计扩展到更大的一类函数和分布,这些函数和分布是在p-adic群上的调和分析中产生的,包括Harish-Chandra特征,从而导致新的应用。同源类的大小。2003年,E.联合盖克勒研究的问题“有多大可能是一个给定的椭圆曲线在一个总理有限领域有一个给定数量的合理点?".他给出了一个基于概率启发的明确答案,这个答案太强了,以至于不可能是真的,这看起来有点神秘。在这个项目与J. Achter,我们的目标是提供一个解释盖克勒的公式作出明确的和非常自然的联系与朗兰兹-Kottwitz公式,表示的大小iskal-class的主要极化阿贝尔品种的一个adelic轨道积分。然后,我们计划扩大Gekeler的计算从椭圆曲线阿贝尔品种。连接的概率分布类似的研究Gekeler与轨道积分允许一个问一些问题,他们的渐近行为。我们希望能够使用提案第一部分中轨道积分的一致估计来公式化和回答其中的一些渐近问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gordon, Julia其他文献
The Effects of Noise and Reverberation on Listening Effort in Adults With Normal Hearing
- DOI:
10.1097/aud.0000000000000222 - 发表时间:
2016-01-01 - 期刊:
- 影响因子:3.7
- 作者:
Picou, Erin M.;Gordon, Julia;Ricketts, Todd A. - 通讯作者:
Ricketts, Todd A.
EBV Status and Thiopurine Use in Pediatric IBD
- DOI:
10.1097/mpg.0000000000001077 - 发表时间:
2016-05-01 - 期刊:
- 影响因子:2.9
- 作者:
Gordon, Julia;Ramaswami, Archana;Dubinsky, Marla - 通讯作者:
Dubinsky, Marla
Sugar ecologies: their metabolic and racial effects
- DOI:
10.1080/15528014.2019.1638123 - 发表时间:
2019-01-01 - 期刊:
- 影响因子:1
- 作者:
Hatch, Anthony Ryan;Sternlieb, Sonya;Gordon, Julia - 通讯作者:
Gordon, Julia
Gordon, Julia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gordon, Julia', 18)}}的其他基金
Measures, orbital integrals, and counting points.
测量、轨道积分和计数点。
- 批准号:
RGPIN-2020-04351 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Measures, orbital integrals, and counting points.
测量、轨道积分和计数点。
- 批准号:
RGPIN-2020-04351 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Measures, orbital integrals, and counting points.
测量、轨道积分和计数点。
- 批准号:
RGPIN-2020-04351 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Uniform estimates and asymptotics for p-adic orbital integrals and characters
p-adic 轨道积分和特征的均匀估计和渐近
- 批准号:
RGPIN-2015-04653 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Uniform estimates and asymptotics for p-adic orbital integrals and characters
p-adic 轨道积分和特征的均匀估计和渐近
- 批准号:
477880-2015 - 财政年份:2017
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Uniform estimates and asymptotics for p-adic orbital integrals and characters
p-adic 轨道积分和特征的均匀估计和渐近
- 批准号:
RGPIN-2015-04653 - 财政年份:2017
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Uniform estimates and asymptotics for p-adic orbital integrals and characters
p-adic 轨道积分和特征的均匀估计和渐近
- 批准号:
RGPIN-2015-04653 - 财政年份:2016
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Uniform estimates and asymptotics for p-adic orbital integrals and characters
p-adic 轨道积分和特征的均匀估计和渐近
- 批准号:
RGPIN-2015-04653 - 财政年份:2015
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Uniform estimates and asymptotics for p-adic orbital integrals and characters
p-adic 轨道积分和特征的均匀估计和渐近
- 批准号:
477880-2015 - 财政年份:2015
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Motivic integration and p-adic groups
动机整合和 p-adic 组
- 批准号:
331159-2010 - 财政年份:2014
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Towards establishing accurate estimates of national chronic hepatitis B prevalence and undiagnosed proportion in Canada
准确估计加拿大全国慢性乙型肝炎患病率和未确诊比例
- 批准号:
488763 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Operating Grants
The Phenomenon of Stem Cell Aging according to Methylation Estimates of Age After Hematopoietic Stem Cell Transplantation
根据造血干细胞移植后甲基化年龄估算干细胞衰老现象
- 批准号:
23K07844 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
FUTURE-FLOOD: New estimates of evolving UK flood risk for improved climate resilience
未来洪水:对英国不断变化的洪水风险的新估计,以提高气候适应能力
- 批准号:
NE/X014134/1 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Research Grant
CAREER: Improving Estimates of Changing Firn Meltwater Storage and Flux in Temperate Glacier Systems
职业:改进对温带冰川系统中冰雪融水储存和通量变化的估计
- 批准号:
2239668 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Continuing Grant
Real-World Data Estimates of Racial Fairness with Pharmacogenomics-Guided Drug Policy
以药物基因组学为指导的药物政策对种族公平性的真实世界数据估计
- 批准号:
10797705 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Topological Consequences of Distortion-type Estimates
失真型估计的拓扑后果
- 批准号:
2247469 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Continuing Grant
Physical-Space Estimates on Black Hole Perturbations
黑洞扰动的物理空间估计
- 批准号:
2306143 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
CAS: Estimates of the decay of diffusion induced flows in strongly stratified fluids and ergodic mixing properties of solutes driven by randomly moving walls in viscous fluids.
CAS:对强分层流体中扩散诱导流的衰减以及粘性流体中随机移动壁驱动的溶质的遍历混合特性的估计。
- 批准号:
2308063 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
al-time epidemiological intelligence to inform control of SARS-CoV-2: improving the precision, validity, and granularity of estimates of the effective reproduction number in Canada
实时流行病学情报为 SARS-CoV-2 的控制提供信息:提高加拿大有效传染数估计的精确度、有效性和粒度
- 批准号:
495568 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Miscellaneous Programs
Methods for deterministic treatment effect estimates for clinical trials with missing data
缺失数据的临床试验的确定性治疗效果估计方法
- 批准号:
2886293 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Studentship