Reconfigurable Microwave Devices for Modern Wireless Applications
适用于现代无线应用的可重构微波设备
基本信息
- 批准号:RGPIN-2020-05614
- 负责人:
- 金额:$ 2.04万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Reconfigurability of microwave devices is a key feature that is fast becoming a vital requirement for modern wireless systems. Autonomous Vehicles, Mobile Communication, Aviation bstrates over the years. However, their large size did not render them integrable in compact communication systems. In the present day and age, commercial applications such as smart gadgets require wireless solutions to be extremely compact and easily portable. Thus, if these magnetic based components are to compete with the other technologies, then there needs to be an adaptation in their implementation. The applicant has previously used the multilayer ferrite LTCC (Low Temperature Co-fired Ceramic) technology to realize compact and efficient tunable designs. By the virtue of vertical integration, the size was reduced immensely while improving efficiency manifolds. However, two major issues are still left outstanding and cannot be over-looked: i) Cost, ii) RF Loss. These problems can be resolved by using the new substrate printing techniques based on magnetic inks. The work will focus on designing economical magnetically tunable components with high quality RF performance.
2. Field Programmable Microwave Substrate (FPMS):
Analogous to magnetically tunable RF devices, FPMS is a new innovative idea that can realize reconfigurable RF components exploiting dielectric properties as opposed to the magnetic ones. Using this idea, the designers can employ a single device to perform multiple RF functions. Usually an RF device has a single function associated with it with limited tunability. For instance, a tunable antenna can be operated at different frequency bands, but its radiation pattern is usually unaltered. FPMS provides a unique strategy where a single device can perform multiple functions. This allows for a range of RF functions to be integrated into a single solution, inculcating a paradigm shift from the state of the art. However, once again the dominant challenge is RF loss, that completely hampers the efficiency of the RF devices. The proposal will focus on improving the RF loss, among other design advancements to demonstrate high gain and reconfigurable antenna designs based on FPMS technology.
The grant will support the training of 4 graduate and 5 undergraduate students. They will acquire the necessary skills to find employment in Canadian industries where wireless applications are rapidly growing and the need of highly skilled HQPs is on the rise.
微波器件的可重构性是一个关键特征,它正迅速成为现代无线系统的重要要求。自动驾驶汽车、移动的通信、航空业多年来一直是人们关注的焦点。然而,它们的大尺寸并没有使它们在紧凑的通信系统中可集成。在当今时代,诸如智能小工具之类的商业应用要求无线解决方案极其紧凑且易于携带。因此,如果这些基于磁性的组件要与其他技术竞争,那么需要在其实现中进行调整。申请人先前已经使用多层铁氧体LTCC(低温共烧陶瓷)技术来实现紧凑且高效的可调谐设计。通过纵向集成,在提高效率的同时,大大减小了流形的尺寸。然而,两个主要问题仍然悬而未决,不容忽视:i)成本,ii)射频损耗。这些问题可以通过使用基于磁性油墨的新型承印物印刷技术来解决。这项工作将集中在设计具有高质量RF性能的经济型磁可调元件。
2.现场可编程微波基板(FPMS):
类似于磁可调谐RF器件,FPMS是一种新的创新理念,可以实现利用介电特性而不是磁性特性的可重构RF组件。利用这个想法,设计人员可以使用单个器件来执行多个RF功能。通常,RF设备具有与其相关联的单一功能,具有有限的可调谐性。例如,可调谐天线可以在不同的频带工作,但其辐射模式通常不变。FPMS提供了一种独特的策略,其中单个设备可以执行多种功能。这允许将一系列RF功能集成到单个解决方案中,从而实现与现有技术的范式转变。然而,主要挑战再次是RF损耗,这完全阻碍了RF器件的效率。该提案将专注于改善RF损耗,以及其他设计进步,以展示基于FPMS技术的高增益和可重构天线设计。
该赠款将支持4名研究生和5名本科生的培训。他们将获得必要的技能,以便在加拿大的无线应用迅速增长的行业中找到工作,并且对高技能HQP的需求正在增加。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
AbdulGhaffar, Farhan其他文献
AbdulGhaffar, Farhan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('AbdulGhaffar, Farhan', 18)}}的其他基金
Reconfigurable Microwave Devices for Modern Wireless Applications
适用于现代无线应用的可重构微波设备
- 批准号:
RGPIN-2020-05614 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Reconfigurable Microwave Devices for Modern Wireless Applications
适用于现代无线应用的可重构微波设备
- 批准号:
RGPIN-2020-05614 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Reconfigurable Microwave Devices for Modern Wireless Applications
适用于现代无线应用的可重构微波设备
- 批准号:
DGECR-2020-00435 - 财政年份:2020
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Launch Supplement
相似海外基金
CAREER: Next-generation Logic, Memory, and Agile Microwave Devices Enabled by Spin Phenomena in Emergent Quantum Materials
职业:由新兴量子材料中的自旋现象实现的下一代逻辑、存储器和敏捷微波器件
- 批准号:
2339723 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Continuing Grant
RII Track-4: NSF: Development of Semiconductor Lasers and Passive Devices on a Single Sapphire Platform for Integrated Microwave Photonics
RII Track-4:NSF:在单个蓝宝石平台上开发用于集成微波光子学的半导体激光器和无源器件
- 批准号:
2327229 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Standard Grant
ExpandQISE: Track 2: Expanding Quantum Research and Education at Winston-Salem State University with Research on Hybrid Microwave-Optical Quantum Devices
ExpandQISE:轨道 2:通过混合微波光量子器件的研究扩大温斯顿塞勒姆州立大学的量子研究和教育
- 批准号:
2329017 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Continuing Grant
CAREER: Neural Network Enhanced Electromagnetics and Multiphysics Simulation Methods for RF and Microwave Reconfigurable Devices
职业:射频和微波可重构器件的神经网络增强电磁学和多物理场仿真方法
- 批准号:
2238124 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Continuing Grant
Novel microwave devices based on new materials and new manufacturing techniques
基于新材料和新制造技术的新型微波器件
- 批准号:
2883004 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Studentship
Microwave devices based on inelastic Cooper pair tunneling
基于非弹性库珀对隧道效应的微波器件
- 批准号:
RGPIN-2018-05398 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Utilising novel microwave filtering techniques for improved performance in superconducting quantum devices
利用新颖的微波滤波技术提高超导量子器件的性能
- 批准号:
EP/W027992/1 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Fellowship
Microwave Devices for Biosensors and Single Cell Dielectric Spectroscopy
用于生物传感器和单细胞介电谱的微波设备
- 批准号:
RGPIN-2019-05859 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Surrogate Based Automated Tuning of Microwave Devices and Systems
基于代理的微波设备和系统自动调谐
- 批准号:
RGPIN-2020-06853 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Reconfigurable Microwave Devices for Modern Wireless Applications
适用于现代无线应用的可重构微波设备
- 批准号:
RGPIN-2020-05614 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual