CAREER: Neural Network Enhanced Electromagnetics and Multiphysics Simulation Methods for RF and Microwave Reconfigurable Devices
职业:射频和微波可重构器件的神经网络增强电磁学和多物理场仿真方法
基本信息
- 批准号:2238124
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The rapid development of communication, sensing, and navigation systems are driving technological advances in the next-generation reconfigurable radiofrequency (RF) and microwave devices. These devices utilize tunable external stimuli such as biasing voltages or currents, electrical/magnetic/optical excitations, temperature variations, and mechanical forces to reconfigure their working properties and achieve spectrum-agile operations. To address the spatial, spectrum, and power limits, miniaturized and power-efficient RF and microwave devices are of high demand. While the reconfigurability and controllability provide unprecedented system flexibility and reliability, the design and optimization methods for such devices face great challenges coming from the structural and material complexities, multiscale design challenges, multiphysics and nonlinear interactions, and high optimization dimensionalities. This research aims at developing physics and neural network enabled electromagnetic (EM) and multiphysics simulation methods to address the challenges of multiscale, multiphysics, and nonlinear modeling for the efficient evaluation and optimization of RF and microwave reconfigurable devices. The project looks at how to develop modeling and simulation methods that utilize advanced numerical and neural network techniques for more efficient and reliable device modeling and assessments. In addition, the project has extensive education and outreach plans including the involvement of African American students and other underrepresented minority students, as well as the development of video clips and demonstrations to disseminate the results to the public. To develop, implement, validate, and apply modeling and simulation methods for EM and multiphysics design of RF/microwave reconfigurable devices, the project will conduct four major research activities: 1) A novel all-frequency stable EM formulation and its domain-decomposition method (DDM) will be developed to address wideband and multiscale EM modeling problems. 2) A graph neural network (GNN)-aided DDM will be developed to solve large-scale EM problems with a superior efficiency. 3) Neural network (NN)-assisted multiphysics simulation method and nonlinear surrogate solvers will be investigated to address challenges in multiphysics modeling and solve nonlinear problems without the need of traditional gradient- or Newton-based iteration. 4) A physics-guided NN device optimizer will integrate the above numerical evaluation techniques to provide fast parameter sweep and shape optimization capabilities to combat the high dimensionality. The research to seamlessly integrate physics- and NN-enabled scientific computing methodologies will lead to a revolutionary simulation tool with enabling modeling and design capabilities that do not currently exist.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
通信、传感和导航系统的快速发展正在推动下一代可重构射频(RF)和微波器件的技术进步。这些设备利用可调外部刺激,如偏置电压或电流,电/磁/光激励,温度变化和机械力,以重新配置其工作特性,并实现频谱捷变操作。为了解决空间,频谱和功率限制,小型化和功率高效的RF和微波器件具有很高的需求。虽然可重构性和可控性提供了前所未有的系统灵活性和可靠性,但此类器件的设计和优化方法面临着来自结构和材料复杂性、多尺度设计挑战、多物理场和非线性相互作用以及高优化维度的巨大挑战。本研究旨在开发物理和神经网络使电磁(EM)和多物理场仿真方法,以解决多尺度,多物理场和非线性建模的挑战,有效地评估和优化RF和微波可重构器件。该项目着眼于如何开发建模和仿真方法,利用先进的数值和神经网络技术进行更有效和可靠的设备建模和评估。此外,该项目有广泛的教育和外联计划,包括让非裔美国学生和其他代表性不足的少数民族学生参与,以及制作视频剪辑和演示,向公众传播成果。为了开发、实施、验证和应用RF/微波可重构器件的电磁和多物理场设计的建模和仿真方法,该项目将进行四项主要研究活动:1)将开发一种新的全频率稳定的电磁公式及其域分解方法(DDM),以解决宽带和多尺度电磁建模问题。2)一个图形神经网络(GNN)辅助DDM将开发解决大规模电磁问题的上级效率。3)神经网络(NN)辅助多物理场模拟方法和非线性代理求解器将被研究,以解决多物理场建模和解决非线性问题,而不需要传统的梯度或牛顿迭代的挑战。4)物理引导的NN设备优化器将集成上述数值评估技术,以提供快速参数扫描和形状优化能力,以对抗高维。该研究无缝集成物理学和神经网络支持的科学计算方法将导致一个革命性的仿真工具,使建模和设计能力,目前还不存在。这个奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Su Yan其他文献
Compressive behavior and electronic properties of ammonia ice: a fi rst-principles study
氨冰的压缩行为和电子特性:第一性原理研究
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:3.9
- 作者:
Yu Xueke;Jiang Xue;Su Yan;Zhao Jijun - 通讯作者:
Zhao Jijun
Nanoprobe-Initiated Enzymatic Polymerization for Highly Sensitive Electrochemical DNA Detection
纳米探针引发的酶聚合用于高灵敏电化学 DNA 检测
- DOI:
10.1021/acsami.5b08817 - 发表时间:
2015 - 期刊:
- 影响因子:9.5
- 作者:
Wan Ying;Wang Pengjuan;Su Yan;Wang Lihua;Pan Dun;Aldalbahi Ali;Yang Shulin;Zuo Xiaolei - 通讯作者:
Zuo Xiaolei
Warming Affects Soil Nitrogen Mineralization via Changes in Root Exudation and Associated Soil Microbial Communities in a Subalpine Tree Species Abies fabri
变暖通过亚高山冷杉根系分泌物和相关土壤微生物群落的变化影响土壤氮矿化
- DOI:
10.1007/s42729-021-00657-z - 发表时间:
2021 - 期刊:
- 影响因子:3.9
- 作者:
Liu Weilong;Jiang Yonglei;Su Yan;Smoak Joseph M.;Duan Baoli - 通讯作者:
Duan Baoli
A neurodynamic approach to compute the generalized eigenvalues of symmetric positive matrix pair
计算对称正矩阵对广义特征值的神经动力学方法
- DOI:
10.1016/j.neucom.2019.06.016 - 发表时间:
2019 - 期刊:
- 影响因子:6
- 作者:
Jiqiang Feng;Su Yan;Sitian Qin;Wen Han - 通讯作者:
Wen Han
The model and stress analysis of self-doping SiGe/Si multi-quantum wells applied in uncooled infrared focal plane array
非制冷红外焦平面阵列自掺杂SiGe/Si多量子阱模型及应力分析
- DOI:
10.1016/j.ijleo.2019.163285 - 发表时间:
2019 - 期刊:
- 影响因子:3.1
- 作者:
Jiang Bo;Fang Zhong;Zhou Tong;Zhu Xinhua;Su Yan - 通讯作者:
Su Yan
Su Yan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Su Yan', 18)}}的其他基金
Excellence in Research: Microwave-Assisted In-Situ Hydrogen Generation: Experimentation, Simulation, and Optimization
卓越的研究:微波辅助原位制氢:实验、模拟和优化
- 批准号:
2247676 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Research Initiation Award: Theoretical and Computational Methods for Robust Retrieval of Effective Electromagnetic Properties of Random Composite Materials
研究启动奖:鲁棒检索随机复合材料有效电磁特性的理论和计算方法
- 批准号:
2101012 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
Neural Process模型的多样化高保真技术研究
- 批准号:62306326
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Proof Sharing and Transfer for Boosting Neural Network Verification
职业:促进神经网络验证的证明共享和转移
- 批准号:
2238079 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Developing Neural Network Theory for Uncovering How the Brain Learns
职业:发展神经网络理论以揭示大脑如何学习
- 批准号:
2239780 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: DeepMatter: A Scalable and Programmable Embedded Deep Neural Network
职业:DeepMatter:可扩展且可编程的嵌入式深度神经网络
- 批准号:
2348983 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: A Multichannel Convolutional Neural Network Framework for Prediction of Damage Nucleation Sites in Microstructure
职业:用于预测微观结构中损伤成核位点的多通道卷积神经网络框架
- 批准号:
2341922 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Towards theoretical foundations of neural network based representation learning
职业:迈向基于神经网络的表示学习的理论基础
- 批准号:
2145703 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: A Multichannel Convolutional Neural Network Framework for Prediction of Damage Nucleation Sites in Microstructure
职业生涯:用于预测微观结构中损伤成核位点的多通道卷积神经网络框架
- 批准号:
2142164 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: IIS: RI: Foundations of Deep Neural Network Robustness and Efficiency
职业:IIS:RI:深度神经网络鲁棒性和效率的基础
- 批准号:
2144960 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Deciphering the neural network orchestrating sex differences in metabolic circadian rhythms
职业:破译协调代谢昼夜节律性别差异的神经网络
- 批准号:
2045267 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Neural Network-Inspired Information Processing Beyond the Binary Digital Abstraction
职业:超越二进制数字抽象的神经网络启发信息处理
- 批准号:
1942900 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Uncovering the Impact of Traditional and Novel Chronic Stimulation Modalities on Neural Excitability and Native Neuronal Network Function
职业:揭示传统和新型慢性刺激方式对神经兴奋性和天然神经元网络功能的影响
- 批准号:
1943906 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant