Random series in the unit disk, random matrix theory, and the gaussian multiplicative chaos

单位圆盘中的随机级数、随机矩阵理论和高斯乘法混沌

基本信息

  • 批准号:
    RGPIN-2020-04974
  • 负责人:
  • 金额:
    $ 1.89万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Probability is arguably the study of statistical independence, both the phenomenology of how this independence manifests after sometimes tortuous transformations and sometimes how to find independence in mathematical problems that do not obviously have this structure built in. The theory of random series was developed in large part to understand how the coefficients in a power series or trigonometric series influence the qualitative behavior of the limit. This is done by asking for properties of the series when these coefficients are independent random variables. Much of the theory of random series has focused on analytic properties of the series, its boundedness or its smoothness. Important geometric questions remain for these objects: what can be said about the images of these random series? Is there a theory for answering this question which is coherent, in much the way that there is a theory for the boundedness of random processes? This proposal seeks to develop on this question an answer to some outstanding questions in random series. It looks to develop these answers by turning to branching processes. Most questions which can be posed for Gaussian random series have a heuristic answer that can be formulated in terms of a Gaussian branching random walk with time varying variance profile. Some of these questions are interesting open problems for the branching process in their own right, and we propose some study into these models. It also seeks to tie new theory on random series to other geometric probability questions, surrounding the Gaussian multiplicative chaos, which in some cases can be viewed as the exponential of a certain random series. This defines a random measure with interesting fractal properties, and it appears in many different contexts. It also naturally ties into Mandelbrot's theory of random cascades, perhaps the most canonical example of a random fractal. This proposal looks at the exponential of other random series, and to what extent they share properties with the specific Gaussian case. Is there a more general theory of random fractal that includes the Gaussian multiplicative chaos and other random fractals? Finally, this proposal looks to expand the connection of the characteristic polynomial of random matrices to the Gaussian multiplicative chaos. Surprisingly, characteristic polynomials of random matrices have a somewhat miraculous exact connection to Gaussian power series, and their characteristic polynomials have an exact connection to these Gaussian multiplicative chaoses, when the dimension size of the matrix tends to infinity. This is in spite of their being relatively far from Gaussian power series in many statistical senses.
概率论可以说是对统计独立性的研究,既研究这种独立性如何在有时曲折的变换后表现出来的现象学,也研究如何在没有明显内置这种结构的数学问题中找到独立性。 随机级数理论的发展在很大程度上是为了理解幂级数或三角级数中的系数如何影响极限的定性行为。 当这些系数是独立的随机变量时,这是通过询问序列的属性来完成的。 随机级数的理论大多集中在级数的分析性质,它的有界性或光滑性。 重要的几何问题仍然为这些对象:什么可以说这些随机序列的图像? 有没有一个理论来回答这个问题,这是连贯的,在很大程度上,有一个理论的有界性的随机过程? 这项建议旨在就这一问题对一些悬而未决的问题随机提出一个答案。 它希望通过转向分支过程来开发这些答案。 大多数问题,可以提出高斯随机序列有一个启发式的答案,可以制定一个高斯分支随机游动随时间变化的方差分布。 其中一些问题是有趣的开放问题的分支过程中,在自己的权利,我们提出了一些研究这些模型。 它还试图将随机序列的新理论与其他几何概率问题联系起来,围绕高斯乘性混沌,在某些情况下可以被视为某个随机序列的指数。 这定义了一个具有有趣分形性质的随机测度,它出现在许多不同的上下文中。 它也自然地与曼德尔布罗特的随机级联理论联系在一起,也许是随机分形的最典型的例子。 这个建议着眼于其他随机序列的指数,以及它们在多大程度上与特定的高斯情况共享属性。有没有一个更普遍的随机分形理论,包括高斯乘性混沌和其他随机分形? 最后,该方案将随机矩阵的特征多项式与高斯乘性混沌的联系进行了扩展。 令人惊讶的是,随机矩阵的特征多项式与高斯幂级数有某种神奇的精确联系,并且当矩阵的维数趋于无穷大时,其特征多项式与这些高斯乘性混沌有精确联系。 这是尽管他们是相对远离高斯幂级数在许多统计意义上。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paquette, Elliot其他文献

Surjectivity of near-square random matrices
近方随机矩阵的满射性
  • DOI:
    10.1017/s0963548319000348
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nguyen, Hoi. H.;Paquette, Elliot
  • 通讯作者:
    Paquette, Elliot
Universality for the Conjugate Gradient and MINRES Algorithms on Sample Covariance Matrices
样本协方差矩阵上的共轭梯度和 MINRES 算法的通用性
The Maximum of the CUE Field

Paquette, Elliot的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paquette, Elliot', 18)}}的其他基金

Random series in the unit disk, random matrix theory, and the gaussian multiplicative chaos
单位圆盘中的随机级数、随机矩阵理论和高斯乘法混沌
  • 批准号:
    RGPIN-2020-04974
  • 财政年份:
    2022
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Random series in the unit disk, random matrix theory, and the gaussian multiplicative chaos
单位圆盘中的随机级数、随机矩阵理论和高斯乘法混沌
  • 批准号:
    RGPIN-2020-04974
  • 财政年份:
    2021
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Random series in the unit disk, random matrix theory, and the gaussian multiplicative chaos
单位圆盘中的随机级数、随机矩阵理论和高斯乘法混沌
  • 批准号:
    DGECR-2020-00529
  • 财政年份:
    2020
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Launch Supplement

相似国自然基金

删失数据非线性分位数回归模型的series估计及其实证分析中的应用
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
基于线性及非线性模型的高维金融时间序列建模:理论及应用
  • 批准号:
    71771224
  • 批准年份:
    2017
  • 资助金额:
    49.0 万元
  • 项目类别:
    面上项目

相似海外基金

Microscale Radionuclide S-values for αRPT
αRPT 的微量放射性核素 S 值
  • 批准号:
    10713711
  • 财政年份:
    2023
  • 资助金额:
    $ 1.89万
  • 项目类别:
A Multi-Modal Combination Intervention to Promote Cognitive Function in Older Intensive Care Unit Survivors
促进老年重症监护病房幸存者认知功能的多模式组合干预
  • 批准号:
    10662893
  • 财政年份:
    2023
  • 资助金额:
    $ 1.89万
  • 项目类别:
Research Project 2: Neuroblastoma
研究项目2:神经母细胞瘤
  • 批准号:
    10712294
  • 财政年份:
    2023
  • 资助金额:
    $ 1.89万
  • 项目类别:
Nanoparticle-Enhanced Radiation Therapy for DIPG
DIPG 纳米粒子增强放射治疗
  • 批准号:
    10592202
  • 财政年份:
    2023
  • 资助金额:
    $ 1.89万
  • 项目类别:
The Alara Imaging Gateway: Linking Electronic Health Records and Radiology Imaging Exams to Report on National Quality Measures to Reduce Cancer Risk from Computed Tomography (Alara Imaging Gateway)
Alara 成像网关:将电子健康记录和放射成像检查联系起来,报告国家降低计算机断层扫描癌症风险的质量措施 (Alara Imaging Gateway)
  • 批准号:
    10820279
  • 财政年份:
    2023
  • 资助金额:
    $ 1.89万
  • 项目类别:
Inequities in family engagement in the neonatal intensive care unit
新生儿重症监护病房中家庭参与的不平等
  • 批准号:
    10606766
  • 财政年份:
    2023
  • 资助金额:
    $ 1.89万
  • 项目类别:
Molecular, Cellular, and Tissue Characterization Unit
分子、细胞和组织表征单元
  • 批准号:
    10900845
  • 财政年份:
    2023
  • 资助金额:
    $ 1.89万
  • 项目类别:
Adapting and testing a deimplementation program in the Intensive Care Unit
在重症监护病房调整和测试取消计划
  • 批准号:
    10350297
  • 财政年份:
    2022
  • 资助金额:
    $ 1.89万
  • 项目类别:
Project 1: Deployable Software for the Rapid Assessment of Organ Dose Following Radionuclide Intakes
项目 1:用于快速评估放射性核素摄入后器官剂量的可部署软件
  • 批准号:
    10327396
  • 财政年份:
    2022
  • 资助金额:
    $ 1.89万
  • 项目类别:
Bringing 4π radiation therapy to the clinic
将 4° 放射治疗引入诊所
  • 批准号:
    10464360
  • 财政年份:
    2022
  • 资助金额:
    $ 1.89万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了