Credit assignment in the neocortex

新皮质的信用分配

基本信息

  • 批准号:
    RGPIN-2020-05105
  • 负责人:
  • 金额:
    $ 4.53万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

When we learn something new our brain changes. Specifically, the connections between the cells in our brains change. These connections, called synapses, determine how information flows through our brains, so changing them alters how our nervous system processes information. What is notable about learning, though, is that we don't just change when we learn, we get better. Though neuroscientists now have some understanding about synaptic changes in the brain, the mechanisms that ensure that we actually get better at something when we learn remain very mysterious. This mystery is known as the credit assignment problem. Somehow, our brains are capable of “assigning credit” for any errors or successes to the synapses that underlie a behaviour. Put another way, our brain somehow knows which synapses need to change in order to reduce our errors and increase our successes. Interestingly, simulated brains, known as artificial neural networks, have allowed researchers in the field of artificial intelligence (AI) to build systems that can recognise images, translate languages, drive cars, and control robotic arms. As with real brains, artificial neural networks change their synaptic connections when they learn. This works because computer scientists have developed algorithms for assigning credit in artificial neural networks. However, artificial neural networks still cannot learn as well as human beings. For example, a human can learn to drive a car in a matter of hours, whereas current artificial neural networks take millions of hours. Therefore, though the credit assignment algorithms used in artificial neural networks have been important for AI, they do not tell us exactly how our own brains work. The question we want to answer in this research program is: how does the mammalian brain solve the credit assignment problem, and can we build artificial neural networks that mimic the brain's solution? We will utilise a combination of AI and neuroscience to address this question. This research has significant potential to benefit society. If we could understand how the brain solves the credit assignment problem, then we could simultaneously make two significant leaps forward. First, we would understand how the brain rewires itself when learning. This could help us to develop novel brain-computer interfaces, prosthetic devices, etc. Second, if we understood credit assignment in the brain, we could potentially develop new algorithms for artificial neural networks that would give them the ability to learn more like humans. This could make them faster at learning. Canada is a world-leader in neuroscience inspired AI, and this research will help to train the next generation of researchers, software engineers, and entrepreneurs to help consolidate our position in this field and generate economic benefits for Canadian society.
当我们学习新东西时,我们的大脑会发生变化。具体来说,我们大脑中细胞之间的联系发生了变化。这些被称为突触的连接决定了信息如何在我们的大脑中流动,所以改变它们会改变我们的神经系统处理信息的方式。然而,值得注意的是,当我们学习时,我们不仅会改变,还会变得更好。尽管神经科学家现在对大脑中的突触变化有了一些了解,但确保我们在学习时确实在某件事上做得更好的机制仍然非常神秘。这个谜团被称为信用分配问题。不知何故,我们的大脑能够将任何错误或成功“归功于”构成行为基础的突触。换句话说,我们的大脑知道哪些突触需要改变,以减少我们的错误,增加我们的成功。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richards, Blake其他文献

Catalyzing next-generation Artificial Intelligence through NeuroAI.
  • DOI:
    10.1038/s41467-023-37180-x
  • 发表时间:
    2023-03-22
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Zador, Anthony;Escola, Sean;Richards, Blake;Olveczky, Bence;Bengio, Yoshua;Boahen, Kwabena;Botvinick, Matthew;Chklovskii, Dmitri;Churchland, Anne;Clopath, Claudia;DiCarlo, James;Ganguli, Surya;Hawkins, Jeff;Kording, Konrad;Koulakov, Alexei;LeCun, Yann;Lillicrap, Timothy;Marblestone, Adam;Olshausen, Bruno;Pouget, Alexandre;Savin, Cristina;Sejnowski, Terrence;Simoncelli, Eero;Solla, Sara;Sussillo, David;Tolias, Andreas S.;Tsao, Doris
  • 通讯作者:
    Tsao, Doris

Richards, Blake的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richards, Blake', 18)}}的其他基金

Credit assignment in the neocortex
新皮质的信用分配
  • 批准号:
    RGPAS-2020-00031
  • 财政年份:
    2022
  • 资助金额:
    $ 4.53万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Credit assignment in the neocortex
新皮质的信用分配
  • 批准号:
    RGPIN-2020-05105
  • 财政年份:
    2022
  • 资助金额:
    $ 4.53万
  • 项目类别:
    Discovery Grants Program - Individual
Credit assignment in the neocortex
新皮质的信用分配
  • 批准号:
    RGPIN-2020-05105
  • 财政年份:
    2021
  • 资助金额:
    $ 4.53万
  • 项目类别:
    Discovery Grants Program - Individual
Credit assignment in the neocortex
新皮质的信用分配
  • 批准号:
    RGPAS-2020-00031
  • 财政年份:
    2021
  • 资助金额:
    $ 4.53万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Credit assignment in the neocortex
新皮质的信用分配
  • 批准号:
    RGPAS-2020-00031
  • 财政年份:
    2020
  • 资助金额:
    $ 4.53万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Uncovering the neurobiology of combined supervised and unsupervised learning
揭示监督和无监督学习相结合的神经生物学
  • 批准号:
    RGPIN-2014-04947
  • 财政年份:
    2019
  • 资助金额:
    $ 4.53万
  • 项目类别:
    Discovery Grants Program - Individual
Uncovering the neurobiology of combined supervised and unsupervised learning
揭示监督和无监督学习相结合的神经生物学
  • 批准号:
    RGPIN-2014-04947
  • 财政年份:
    2018
  • 资助金额:
    $ 4.53万
  • 项目类别:
    Discovery Grants Program - Individual
Uncovering the neurobiology of combined supervised and unsupervised learning
揭示监督和无监督学习相结合的神经生物学
  • 批准号:
    RGPIN-2014-04947
  • 财政年份:
    2017
  • 资助金额:
    $ 4.53万
  • 项目类别:
    Discovery Grants Program - Individual
Uncovering the neurobiology of combined supervised and unsupervised learning
揭示监督和无监督学习相结合的神经生物学
  • 批准号:
    RGPIN-2014-04947
  • 财政年份:
    2016
  • 资助金额:
    $ 4.53万
  • 项目类别:
    Discovery Grants Program - Individual
Uncovering the neurobiology of combined supervised and unsupervised learning
揭示监督和无监督学习相结合的神经生物学
  • 批准号:
    RGPIN-2014-04947
  • 财政年份:
    2015
  • 资助金额:
    $ 4.53万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

BETTERXPS - Tackling the Peak Assignment Problem in X-ray Photoelectron Spectroscopy with First Principles Calculations
BETTERXPS - 通过第一原理计算解决 X 射线光电子能谱中的峰分配问题
  • 批准号:
    EP/Y036433/1
  • 财政年份:
    2024
  • 资助金额:
    $ 4.53万
  • 项目类别:
    Research Grant
Simply forever: Tackling PFAS complexity through mode of action assignment
永远简单:通过行动模式分配解决 PFAS 复杂性
  • 批准号:
    NE/Z000084/1
  • 财政年份:
    2024
  • 资助金额:
    $ 4.53万
  • 项目类别:
    Research Grant
Tackling the Peak Assignment Problem in X-ray Photoelectron Spectroscopy with First Principles Calculations
利用第一原理计算解决 X 射线光电子能谱中的峰分配问题
  • 批准号:
    EP/Y037022/1
  • 财政年份:
    2024
  • 资助金额:
    $ 4.53万
  • 项目类别:
    Research Grant
Travel Support for Dynamic Traffic Assignment Conference (DTA 2023); Evanston, Illinois; 10-12 July 2023
动态交通分配会议 (DTA 2023) 的差旅支持;
  • 批准号:
    2330274
  • 财政年份:
    2023
  • 资助金额:
    $ 4.53万
  • 项目类别:
    Standard Grant
Team Support to Improve Glycemic Control Using CGM in Diverse Populations (TEAM CGM)
团队支持在不同人群中使用 CGM 改善血糖控制 (TEAM CGM)
  • 批准号:
    10659721
  • 财政年份:
    2023
  • 资助金额:
    $ 4.53万
  • 项目类别:
Optimizing Telehealth-delivery of a Weight Loss Intervention in Older Adults with Multiple Chronic Conditions: A Sequential, Multiple Assignment, Randomized Trial
优化对患有多种慢性病的老年人进行远程医疗的减肥干预:一项序贯、多项分配、随机试验
  • 批准号:
    10583917
  • 财政年份:
    2023
  • 资助金额:
    $ 4.53万
  • 项目类别:
Precision Medicine in Alzheimer’s Disease: A SMART Trial of Adaptive Exercises and Their Mechanisms of Action Using AT(N) Biomarkers to Optimize Aerobic-Fitness Responses
阿尔茨海默病的精准医学:使用 AT(N) 生物标志物优化有氧健身反应的适应性运动及其作用机制的 SMART 试验
  • 批准号:
    10581973
  • 财政年份:
    2023
  • 资助金额:
    $ 4.53万
  • 项目类别:
Community Liaison and Recruitment Core (CLRC)
社区联络和招聘核心 (CLRC)
  • 批准号:
    10729793
  • 财政年份:
    2023
  • 资助金额:
    $ 4.53万
  • 项目类别:
A Stepped-Care Approach to Treating Dental Fear: A Sequential, Multiple Assignment, Randomized Trial For Cognitive-Behavioral Treatment via Mobile App and Evidence-Based Collaborative Care
治疗牙科恐惧症的阶梯式护理方法:通过移动应用程序和循证协作护理进行认知行为治疗的序贯、多重分配、随机试验
  • 批准号:
    10729822
  • 财政年份:
    2023
  • 资助金额:
    $ 4.53万
  • 项目类别:
Theoretical and empirical study on effective and valid reputation assignment rules for cooperation
有效有效的合作声誉分配规则的理论与实证研究
  • 批准号:
    22KJ0105
  • 财政年份:
    2023
  • 资助金额:
    $ 4.53万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了