Categorical consequences of the microlocal perspective on Arthur packets for p-adic groups

p-adic 群的亚瑟包的微局域视角的分类结果

基本信息

  • 批准号:
    RGPIN-2020-05220
  • 负责人:
  • 金额:
    $ 1.75万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

This NSERC DG application concerns research in the Langlands programme regarding Arthur packets for p-adic groups. The ultimate objective of this research is to explore a specific idea for a categorical form of the local Langlands correspondence. In the early 1990s, David Vogan introduced the idea of using microlocal analysis on a moduli space of Langlands parameters to study Arthur packets for p-adic groups. This idea is parallel to a construction for Real groups developed in conjunction with Jeffrey Adams and Dan Barbasch in their 1992 book The Langlands Classification and Irreducible Characters of Real Groups. Vogan's idea for p-adic groups was presented in his 1993 paper The Local Langlands Correspondence. However, until James Arthur produced a purely local description of Arthur packets for p-adic groups in his 2013 book The Endoscopic Classification of Representations: Orthogonal and Symplectic Groups, it was difficult to test Vogan's ideas. They remain open problems to this date. In Arthur packets for p-adic groups by way of microlocal vanishing cycles of perverse sheaves, with examples by Clifton Cunningham, Andrew Fiori, Ahmed Moussaoui, James Mracek and Bin Xu, Memoirs of the American Mathematical Society (in press), my collaborators and I have adapted many of the results of the book by Adams, Barbasch and Vogan from Real groups to p-adic groups. We refer to the packets of admissible representations of p-adic groups described in our memoir as ABV-packets. The main objective of this proposal is to prove that Arthur packets for pure inner forms of classical p-adic groups are ABV-packets and to prove the refinement of this conjecture appearing in our book pertaining to stable distributions and their endoscopic transfers. I have considerable evidence for this conjecture in the form of examples. Together with my research group, I also have a strategy for the proof of these conjectures for pure inner forms of quasi-split classical groups but because we need to make a careful comparison with Arthur's work, our argument proceeds type by type; with GL(n) in hand, we will work our way through the classical groups beginning with SO(2n+1) and its pure inner forms. At the heart of this research is a comparison of two categories: representations of smooth representations with fixed cuspidal support; and equivariant perverse sheaves on the moduli space of certain Langlands parameters. When properly calibrated, these two categories have the same Grothendieck groups. However, we know that these categories are not, in general, equivalent. My recent work suggests a modification to each of these categories that might be used to establish that they are Koszul dual. This idea is the categorical consequence of the microlocal perspective on Arthur packets that appears in the title of this research proposal and is my ultimate objective: using our work on Arthur packets, I expect to shed light on a categorical local Langlands correspondence for p-adic groups.
这NSERC DG应用程序涉及的研究在朗兰兹计划有关亚瑟包的p进群。本研究的最终目的是探索局部朗兰兹对应的范畴形式的一个具体概念。 在20世纪90年代早期,大卫沃根(David Vogan)引入了利用微局部分析的思想,在朗兰兹参数的模空间上研究p-adic群的亚瑟包。这个想法与杰弗里·亚当斯(Jeffrey Adams)和丹·巴巴什(Dan Barbasch)在1992年的著作《朗兰兹分类和实数群的不可约特征标》(The Langlands Classification and Irreducible Characters of Real Groups)中提出的真实的群的构造是平行的。沃根的想法p进群提出了他在1993年的论文本地朗兰兹对应。然而,直到詹姆斯·亚瑟在他2013年的著作《表示的内窥镜分类:正交和辛群》中给出了p-adic群的亚瑟包的纯局部描述,才很难测试沃根的想法。迄今为止,这些问题仍然悬而未决。 在亚瑟包的p-adic群的方式的微局部消失周期的反常层,与例子克利夫顿坎宁安,安德鲁菲奥里,艾哈迈德Moussaoui,詹姆斯Mracek和徐斌,回忆录的美国数学学会(在出版),我的合作者和我已经适应了许多结果的书由亚当斯,Barbasch和Vogan从真实的群体的p-adic群体。我们指的是我们的回忆录中描述的ABV-包的p-adic群的可接受表示的包。这个建议的主要目的是证明经典p-adic群的纯内部形式的亚瑟包是ABV包,并证明我们的书中出现的关于稳定分布及其内窥镜转移的这个猜想的改进。 我有相当多的证据证明这一猜想的形式的例子。与我的研究小组一起,我也有一个策略来证明准分裂经典群的纯内部形式的这些命题,但是因为我们需要与亚瑟的工作进行仔细的比较,我们的论证逐类进行;有了GL(n),我们将从SO(2n+1)及其纯内部形式开始研究经典群。 在这项研究的核心是比较两类:表示的光滑表示固定尖点支持;和等变的反常层的模空间的某些朗兰兹参数。当正确校准时,这两个类别具有相同的Grothendieck群。然而,我们知道,这些类别一般来说并不等同。我最近的工作建议对这些范畴中的每一个进行修改,以确定它们是Koszul对偶的。这个想法是出现在这个研究计划的标题中的亚瑟包的微局部视角的分类结果,也是我的最终目标:利用我们对亚瑟包的研究,我希望阐明p进群的分类局部朗兰兹对应。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Cunningham, Clifton其他文献

Cunningham, Clifton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Cunningham, Clifton', 18)}}的其他基金

Categorical consequences of the microlocal perspective on Arthur packets for p-adic groups
p-adic 群的亚瑟包的微局域视角的分类结果
  • 批准号:
    RGPIN-2020-05220
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Categorical consequences of the microlocal perspective on Arthur packets for p-adic groups
p-adic 群的亚瑟包的微局域视角的分类结果
  • 批准号:
    RGPIN-2020-05220
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Geometrization of Admissible Distributions and the Local Langlands Conjecture
容许分布的几何化和局部朗兰兹猜想
  • 批准号:
    RGPIN-2015-06103
  • 财政年份:
    2019
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Geometrization of Admissible Distributions and the Local Langlands Conjecture
容许分布的几何化和局部朗兰兹猜想
  • 批准号:
    RGPIN-2015-06103
  • 财政年份:
    2018
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Geometrization of Admissible Distributions and the Local Langlands Conjecture
容许分布的几何化和局部朗兰兹猜想
  • 批准号:
    RGPIN-2015-06103
  • 财政年份:
    2017
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Geometrization of Admissible Distributions and the Local Langlands Conjecture
容许分布的几何化和局部朗兰兹猜想
  • 批准号:
    RGPIN-2015-06103
  • 财政年份:
    2016
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Geometrization of Admissible Distributions and the Local Langlands Conjecture
容许分布的几何化和局部朗兰兹猜想
  • 批准号:
    RGPIN-2015-06103
  • 财政年份:
    2015
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Endoscopic transfer of character sheaves
字符滑轮的内窥镜转移
  • 批准号:
    238853-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Endoscopic transfer of character sheaves
字符滑轮的内窥镜转移
  • 批准号:
    238853-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Endoscopic transfer of character sheaves
字符滑轮的内窥镜转移
  • 批准号:
    238853-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Exposing Verifiable Consequences of the Emergence of Mass
  • 批准号:
    12135007
  • 批准年份:
    2021
  • 资助金额:
    313 万元
  • 项目类别:
    重点项目
Accretion variability and its consequences: from protostars to planet-forming disks
  • 批准号:
    12173003
  • 批准年份:
    2021
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目
Consequences of MALT1 mutation for B cell tolerance
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Conference: 2024 Thiol-Based Redox Regulation and Signaling GRC and GRS: Mechanisms and Consequences of Redox Signaling
会议:2024年基于硫醇的氧化还原调节和信号传导GRC和GRS:氧化还原信号传导的机制和后果
  • 批准号:
    2418618
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
Collaborative Research: REU Site Mystic Aquarium: Plankton to Whales: Consequences of Global Change within Marine Ecosystems
合作研究:REU 站点神秘水族馆:浮游生物到鲸鱼:海洋生态系统内全球变化的后果
  • 批准号:
    2349354
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Continuing Grant
Fitness and evolutionary consequences of developmental plasticity
发育可塑性的适应性和进化后果
  • 批准号:
    DP240102830
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Projects
The demographic consequences of extreme weather events in Australia
澳大利亚极端天气事件对人口的影响
  • 批准号:
    DP240102733
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Projects
Intended and unintended consequences of the ZnO ban from pig diets on antimicrobial resistance, post-weaning diarrhoea and the microbiome
猪日粮中禁用氧化锌对抗菌素耐药性、断奶后腹泻和微生物组的有意和无意的影响
  • 批准号:
    BB/Y003861/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Research Grant
NGO-Prosecutorial Complex in Universal Jurisdiction Cases: Structure and Consequences for Justice and Public Knowledge about Human Rights Violations
普遍管辖权案件中的非政府组织-检察复合体:正义的结构和后果以及公众对侵犯人权行为的了解
  • 批准号:
    2314061
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
Doctoral Dissertation Research: Assessing the physiological consequences of diet and environment for gorillas in zoological settings
博士论文研究:评估动物环境中大猩猩饮食和环境的生理后果
  • 批准号:
    2341433
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
Understanding the motives and consequences of parents' educational investment : Competition, Parental Aversion, and Intergenerational mobility.
了解父母教育投资的动机和后果:竞争、父母厌恶和代际流动。
  • 批准号:
    24K16383
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Intended and unintended consequences of the ZnO ban from pig diets on antimicrobial resistance, post-weaning diarrhoea and the microbiome.
猪日粮中禁用氧化锌对抗菌素耐药性、断奶后腹泻和微生物组的有意和无意的影响。
  • 批准号:
    BB/Y004108/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Research Grant
The rise of self-avatars in collaborative virtual environments and their consequences for users' mental well-being
协作虚拟环境中自我化身的兴起及其对用户心理健康的影响
  • 批准号:
    ES/X010899/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了