Discrete Optimization under Interactions and Uncertainty
交互作用和不确定性下的离散优化
基本信息
- 批准号:RGPIN-2020-05395
- 负责人:
- 金额:$ 1.89万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The aim of this research program is to develop new tools and methodologies to address interactions and uncertainty in discrete optimization problems.
Interactions in decision-making are defined as situations where the solution cost/benefit corresponding to a decision is affected (i.e., non-additive effects) by other decisions and are either the result of dependency between decisions or correlation in large-scale stochastic data. On the modeling side, the challenge is in developing models that integrate a plurality of factors such as reliability, costs/revenue, as well as the interactions and uncertainties in data. On the methodological side, the challenge is in developing large scale optimization techniques that can handle the scale, the uncertainty, and the nonlinearity of the models.
Routing optimization with stochastic and correlated data: When decisions are made in the presence of large-scale stochastic data, it is common to pay more attention to the easy-to-see statistics (e.g., mean) instead of the underlying complex correlations. This puts a large gap between the research and reality in situations where significant correlations exist in data. The objective of this research direction is to study routing optimization in public transport and home delivery services under different types of uncertain and correlated data parameters. This includes developing methodologies to construct uncertainty sets based on past observations and the decision maker's attitude towards risk as well as designing tractable optimization algorithms to handle interactions in these data driven models.
Hub network design with interactions: The classical models for hub location with single assignment suffer from oversimplification. The most prominent shortcomings are linearized transport costs, deterministic data and no structural choice about the size and kind of hub. Moreover, in many problems in parcel delivery with hub-and-spoke structure, local tours are established for the vehicles assigned to each hub, which are then responsible for the pickup and delivery tasks. In these problems, the presence of interaction between route is a critical issue and it needs to be considered explicitly. Furthermore, hub location problems belong to the category of strategic decisions and the exact information about the network is usually uncertain. The objective of this direction is to address the aforementioned challenges in a proper way such that it captures the real-world concerns, on the one hand, and be computationally tractable, on the other hand. In particular, the proposed research program will investigate new techniques for large scale optimization models with nonlinear structure which would require a deeper understanding of the underlying problems.
该研究计划的目的是开发新的工具和方法来解决离散优化问题中的相互作用和不确定性。
决策中的交互被定义为与决策相对应的解决方案成本/收益受到其他决策影响(即非加性效应)的情况,并且是决策之间的依赖性或大规模随机数据中的相关性的结果。在建模方面,挑战在于开发集成多个因素的模型,例如可靠性、成本/收入以及数据中的相互作用和不确定性。在方法论方面,挑战在于开发能够处理模型的规模、不确定性和非线性的大规模优化技术。
使用随机和相关数据进行路由优化:当在存在大规模随机数据的情况下做出决策时,通常会更多地关注易于查看的统计数据(例如平均值)而不是潜在的复杂相关性。在数据存在显着相关性的情况下,这使得研究与现实之间存在很大差距。本研究方向的目标是研究不同类型的不确定和相关数据参数下公共交通和送货上门服务的路径优化。这包括开发基于过去的观察和决策者对风险的态度构建不确定性集的方法,以及设计易于处理的优化算法来处理这些数据驱动模型中的交互。
具有交互作用的枢纽网络设计:具有单一分配的枢纽位置的经典模型过于简单化。最突出的缺点是线性化运输成本、确定性数据以及没有关于枢纽规模和类型的结构选择。而且,在轴辐式结构的包裹投递中,很多问题都是为分配到每个枢纽的车辆建立本地巡回赛,然后由这些车辆负责取件和投递任务。在这些问题中,路由之间是否存在交互是一个关键问题,需要明确考虑。此外,枢纽选址问题属于战略决策的范畴,有关网络的确切信息通常是不确定的。该方向的目标是以适当的方式解决上述挑战,一方面捕获现实世界的问题,另一方面在计算上易于处理。特别是,拟议的研究计划将研究具有非线性结构的大规模优化模型的新技术,这需要对潜在问题有更深入的了解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rostami, Borzou其他文献
Lower bounds for the Quadratic Minimum Spanning Tree Problem based on reduced cost computation
- DOI:
10.1016/j.cor.2015.06.005 - 发表时间:
2015-12-01 - 期刊:
- 影响因子:4.6
- 作者:
Rostami, Borzou;Malucelli, Federico - 通讯作者:
Malucelli, Federico
Rostami, Borzou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rostami, Borzou', 18)}}的其他基金
Discrete Optimization under Interactions and Uncertainty
交互作用和不确定性下的离散优化
- 批准号:
RGPIN-2020-05395 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Discrete Optimization under Interactions and Uncertainty
交互作用和不确定性下的离散优化
- 批准号:
RGPIN-2020-05395 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Discrete Optimization under Interactions and Uncertainty
交互作用和不确定性下的离散优化
- 批准号:
RGPIN-2020-05395 - 财政年份:2021
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Discrete Optimization under Interactions and Uncertainty
交互作用和不确定性下的离散优化
- 批准号:
DGECR-2020-00523 - 财政年份:2020
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Launch Supplement
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
- 批准号:70601028
- 批准年份:2006
- 资助金额:7.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Dynamic Decision-Making Under Uncertainty via Distributionally Robust Optimization
职业:通过分布稳健优化在不确定性下进行动态决策
- 批准号:
2342505 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Standard Grant
CAREER: Advancing Efficient Global Optimization of Extremely Expensive Functions under Uncertainty using Structure-Exploiting Bayesian Methods
职业:使用结构利用贝叶斯方法在不确定性下推进极其昂贵的函数的高效全局优化
- 批准号:
2237616 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Small: Sampling and Optimization under Global Constraints
合作研究:AF:小型:全局约束下的采样和优化
- 批准号:
2309708 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Standard Grant
Co-Design of Neural Operators and Stochastic Optimization Algorithms for Learning Surrogates for PDE-Constrained Optimization Under Uncertainty
不确定性下偏微分方程约束优化学习代理的神经算子和随机优化算法的协同设计
- 批准号:
2324643 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Continuing Grant
This research project falls under the EPSRC Artificial Intelligence Technologies category and specifically focuses on Bayesian Optimization
该研究项目属于 EPSRC 人工智能技术类别,特别关注贝叶斯优化
- 批准号:
2887618 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Studentship
Collaborative Research: AF: Small: Sampling and Optimization under Global Constraints
合作研究:AF:小型:全局约束下的采样和优化
- 批准号:
2309707 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Standard Grant
RI: Small: Taming Massive Pre-trained Models under Label Scarcity via an Optimization Lens
RI:小型:通过优化镜头在标签稀缺的情况下驯服大量预训练模型
- 批准号:
2226152 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别:
Standard Grant
Dynamic Fracture Characterization and Integrated Optimization of Enhanced Oil Recovery Performance in Tight Formations under Uncertainty
不确定性条件下致密地层动态裂缝表征及提高采收率综合优化
- 批准号:
RGPIN-2019-07150 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Climate Smart Forecasting and Robust Optimization of Forest Management System under Uncertainty
不确定性下的气候智能预测与森林管理系统稳健优化
- 批准号:
RGPIN-2022-04855 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Data-Driven Process Systems Optimization under Uncertain Environment
不确定环境下数据驱动的流程系统优化
- 批准号:
RGPIN-2019-04584 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




