Accelerated catalyst layer design and fabrication: Materials discovery through machine learning
加速催化剂层设计和制造:通过机器学习发现材料
基本信息
- 批准号:RTI-2021-00491
- 负责人:
- 金额:$ 10.93万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Research Tools and Instruments
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Decarbonizing the transport and energy sectors is critical for mitigating anthropogenic climate change, as transportation alone accounts for 23% of global energy-related carbon dioxide emissions. While current fuel cells and electrolyzers are already reaching state of the art performances to be used in commercial passenger cars and light vehicles, the widespread use of these technologies demands a substantial reduction in catalyst loading to reduce the high costs of precious group metals. Moreover, the catalyst materials for CO2 electrolyzers, which convert atmospheric CO2 into useful forms of fuel such as syngas, require a substantial amount of work in terms of reducing the loading due to its complicated ion-electron-reactant transport mechanisms.
A catalyst layer is the core component in all electrochemical energy conversion devices including polymer electrolyte membrane (PEM) fuel cells, water electrolyzers, and CO2 electrolyzers. Due to the high catalytic activity required, precious group metals (PGMs) such as Platinum or Iridium are typically used as catalyst materials; however, the costs are prohibitive for widespread adoption, and ultra-low loading catalyst layers would drastically reduce the costs for these clean electrochemical energy conversion technologies. We will apply machine learning to stochastic material generation and multiphase flow simulations of porous materials to identify the key parameters and material architectures for optimal transport behaviour. The requested system will be used to investigate new catalyst layer designs to achieve reduced catalyst loadings with enhanced stability.
We are requesting funds to support a fabrication and testing system for designing catalyst layers with reduced loadings and high stability for fuel cells and electrolyzers. Specifically, the funds will be used for an ultrasonic based catalyst coating system as well as a characterization tool for a segmented electrochemical cell, which will be coupled with Prof. Bazylak's in situ X-ray tomography system to establish a fabrication, testing, and imaging laboratory for catalyst materials. This laboratory will provide Prof. Bazylak and her trainees with an internationally unique system for machine learning based materials discovery for high throughput, concurrent in operando testing and characterization of novel catalyst layers. The impact will be the discovery of ultra-low loading catalyst layer architectures for affordable fuel cells and electrolyzers. The research proposed here will lead to new catalyst designs and manufacturing processes for fuel cells and electrolyzers that will be disseminated to the wider research community. The outcomes of this research will strengthen Canada's leadership in catalyst development and attract industrial and academic partners for the advancement of clean electrochemical energy conversion.
交通和能源部门的脱碳对于减缓人为气候变化至关重要,因为仅交通运输一项就占全球与能源相关的二氧化碳排放量的23%。虽然目前的燃料电池和电解槽已经达到了用于商用乘用车和轻型汽车的最先进性能,但这些技术的广泛使用需要大幅减少催化剂负载量,以降低贵金属的高成本。此外,用于二氧化碳电解槽的催化剂材料将大气中的二氧化碳转化为合成气等有用形式的燃料,由于其复杂的离子-电子-反应物传输机制,在减少负载方面需要大量的工作。
催化层是包括聚合物电解质膜(PEM)燃料电池、水电解槽和CO2电解槽在内的所有电化学能量转换装置的核心部件。由于所需的高催化活性,贵族金属(PGM),如铂或Ir,通常用作催化剂材料;然而,成本高昂,无法广泛采用,而超低负载量的催化剂层将大大降低这些清洁电化学能量转换技术的成本。我们将把机器学习应用于多孔材料的随机材料生成和多相流模拟,以确定优化传输行为的关键参数和材料结构。所要求的系统将用于研究新的催化剂层设计,以实现更低的催化剂负载量和增强的稳定性。
我们正在申请资金,以支持一个制造和测试系统,用于设计燃料电池和电解槽的催化剂层,以减少负载和提高稳定性。具体地说,这笔资金将用于基于超声波的催化剂涂层系统以及分段式电化学电池的表征工具,该工具将与Bazylak教授的原位X射线断层扫描系统相结合,建立催化剂材料的制造、测试和成像实验室。该实验室将为Bazylak教授和她的学员提供一个国际上独一无二的基于机器学习的材料发现系统,用于高通量、同时进行操作测试和新型催化剂层的表征。其影响将是为负担得起的燃料电池和电解槽发现超低负载催化层结构。这里提出的研究将导致燃料电池和电解槽的新催化剂设计和制造工艺,并将传播到更广泛的研究社区。这项研究的结果将加强加拿大在催化剂开发方面的领导地位,并吸引工业界和学术界合作伙伴推动清洁电化学能源转换。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bazylak, Aimy其他文献
Designing Tailored Gas Diffusion Layers with Pore Size Gradients via Electrospinning for Polymer Electrolyte Membrane Fuel Cells
- DOI:
10.1021/acsaem.9b02371 - 发表时间:
2020-03-23 - 期刊:
- 影响因子:6.4
- 作者:
Balakrishnan, Manojkumar;Shrestha, Pranay;Bazylak, Aimy - 通讯作者:
Bazylak, Aimy
Spatially graded porous transport layers for gas evolving electrochemical energy conversion: High performance polymer electrolyte membrane electrolyzers
- DOI:
10.1016/j.enconman.2020.113545 - 发表时间:
2020-12-15 - 期刊:
- 影响因子:10.4
- 作者:
Lee, Jason K.;Lee, ChungHyuk;Bazylak, Aimy - 通讯作者:
Bazylak, Aimy
Simultaneous characterization of oxygen transport resistance and spatially resolved liquid water saturation at high-current density of polymer electrolyte membrane fuel cells with varied cathode relative humidity
- DOI:
10.1016/j.ijhydene.2017.10.031 - 发表时间:
2017-12-07 - 期刊:
- 影响因子:7.2
- 作者:
Muirhead, Daniel;Banerjee, Rupak;Bazylak, Aimy - 通讯作者:
Bazylak, Aimy
Degradation Characteristics of Electrospun Gas Diffusion Layers with Custom Pore Structures for Polymer Electrolyte Membrane Fuel Cells
- DOI:
10.1021/acsami.0c15324 - 发表时间:
2021-01-06 - 期刊:
- 影响因子:9.5
- 作者:
Balakrishnan, Manojkumar;Shrestha, Pranay;Bazylak, Aimy - 通讯作者:
Bazylak, Aimy
Unstable Cathode Potential in Alkaline Flow Cells for CO2 Electroreduction Driven by Gas Evolution
- DOI:
10.1021/acssuschemeng.0c08993 - 发表时间:
2021-04-13 - 期刊:
- 影响因子:8.4
- 作者:
Krause, Kevin;Lee, ChungHyuk;Bazylak, Aimy - 通讯作者:
Bazylak, Aimy
Bazylak, Aimy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bazylak, Aimy', 18)}}的其他基金
Canada Research Chair in Thermofluidics for Clean Energy
加拿大清洁能源热流体研究主席
- 批准号:
CRC-2018-00005 - 财政年份:2022
- 资助金额:
$ 10.93万 - 项目类别:
Canada Research Chairs
Advanced imaging for clean electrochemical energy conversion
用于清洁电化学能量转换的先进成像
- 批准号:
RGPIN-2018-05801 - 财政年份:2022
- 资助金额:
$ 10.93万 - 项目类别:
Discovery Grants Program - Individual
Guiding CO2 Electrolyzer Material Designs Through Advanced Operando Characterization
通过先进的操作表征指导二氧化碳电解槽材料设计
- 批准号:
RTI-2023-00248 - 财政年份:2022
- 资助金额:
$ 10.93万 - 项目类别:
Research Tools and Instruments
Plate shaped catalysts for polymer electrolyte membrane water electrolysis
聚合物电解质膜水电解用板状催化剂
- 批准号:
548855-2019 - 财政年份:2021
- 资助金额:
$ 10.93万 - 项目类别:
Alliance Grants
Canada Research Chair In Thermofluidics For Clean Energy
加拿大清洁能源热流体研究主席
- 批准号:
CRC-2018-00005 - 财政年份:2021
- 资助金额:
$ 10.93万 - 项目类别:
Canada Research Chairs
Advanced imaging for clean electrochemical energy conversion
用于清洁电化学能量转换的先进成像
- 批准号:
RGPIN-2018-05801 - 财政年份:2021
- 资助金额:
$ 10.93万 - 项目类别:
Discovery Grants Program - Individual
Advanced imaging for clean electrochemical energy conversion
用于清洁电化学能量转换的先进成像
- 批准号:
RGPIN-2018-05801 - 财政年份:2020
- 资助金额:
$ 10.93万 - 项目类别:
Discovery Grants Program - Individual
Plate shaped catalysts for polymer electrolyte membrane water electrolysis
聚合物电解质膜水电解用板状催化剂
- 批准号:
548855-2019 - 财政年份:2020
- 资助金额:
$ 10.93万 - 项目类别:
Alliance Grants
Canada Research Chair in Thermofluidics for Clean Energy
加拿大清洁能源热流体研究主席
- 批准号:
CRC-2018-00005 - 财政年份:2020
- 资助金额:
$ 10.93万 - 项目类别:
Canada Research Chairs
相似国自然基金
2D co-catalyst/TiO2{001}协同光催化甲烷制C2+液态含氧化合物
- 批准号:22302187
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
固态核磁共振和密度泛函计算在纳米银催化剂中的研究
- 批准号:21103162
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
新型手性螯和N-氮杂环卡宾金属有机化和物的合成与催化性能研究
- 批准号:20602019
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Theoretical elucidation of optimal structure for PEMFC catalyst layer based on non-equilibrium thermodynamics
基于非平衡热力学的质子交换膜燃料电池催化剂层优化结构的理论阐释
- 批准号:
22KJ2198 - 财政年份:2023
- 资助金额:
$ 10.93万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Nanoporous semiconductor-enabled multi-site photostimulation for cardiac resynchronization therapy
用于心脏再同步治疗的纳米多孔半导体多部位光刺激
- 批准号:
10861527 - 财政年份:2023
- 资助金额:
$ 10.93万 - 项目类别:
Polymer electrolyte membrane fuel cell catalyst layer degradation
聚合物电解质膜燃料电池催化剂层降解
- 批准号:
576757-2022 - 财政年份:2022
- 资助金额:
$ 10.93万 - 项目类别:
Alliance Grants
Development of Three-Dimensional Self-Water-Managed Catalyst Layer Structure for Cost Reduction of Polymer Electrolyte Fuel Cells
开发三维自水管理催化剂层结构以降低聚合物电解质燃料电池成本
- 批准号:
22K03976 - 财政年份:2022
- 资助金额:
$ 10.93万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of Slurry/Catalyst Layer for Polymer Electrolyte Fuel Cell by X-ray Scattering
X射线散射分析聚合物电解质燃料电池浆料/催化剂层
- 批准号:
19K15631 - 财政年份:2019
- 资助金额:
$ 10.93万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Study of precision control of metal-assisted wet-chemical etching of Si using metal multi-layer as a catalyst
以金属多层为催化剂的金属辅助硅湿法化学刻蚀精度控制研究
- 批准号:
18K04916 - 财政年份:2018
- 资助金额:
$ 10.93万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of the polymer electrolyte membrane fuel cell having highly active iron complex catalyst for oxygen reduction and an oxide ion moving layer
具有用于氧还原的高活性铁络合物催化剂和氧化物离子移动层的聚合物电解质膜燃料电池的开发
- 批准号:
18K05301 - 财政年份:2018
- 资助金额:
$ 10.93万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Engineering the Ionic Polymer Phase-Fluid Interface of the PEM Fuel Cell Catalyst Layer for Higher Performance
对 PEM 燃料电池催化剂层的离子聚合物相-流体界面进行工程设计,以获得更高的性能
- 批准号:
1803058 - 财政年份:2018
- 资助金额:
$ 10.93万 - 项目类别:
Standard Grant
Analysis of multi-scale mass transport phenomena in catalyst layer for the development of the efficiency of polymer electrolyte fuel cell
分析催化剂层中的多尺度传质现象以提高聚合物电解质燃料电池的效率
- 批准号:
18H01364 - 财政年份:2018
- 资助金额:
$ 10.93万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Environmentally-responsive, layer-by-layer coatings for the on-demand delivery of therapeutic growth factors and antibiotics to repair craniomaxillofacial bone defects
环境响应型逐层涂层,用于按需输送治疗性生长因子和抗生素,以修复颅颌面骨缺损
- 批准号:
9927495 - 财政年份:2018
- 资助金额:
$ 10.93万 - 项目类别: