Adaptive ML-Based Techniques for Vulnerability Assessment, Threat Modeling and Risk Mitigation in Cyber Security

基于自适应机器学习的网络安全漏洞评估、威胁建模和风险缓解技术

基本信息

  • 批准号:
    RGPIN-2020-06450
  • 负责人:
  • 金额:
    $ 2.11万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

In order to deal with the growing number and sophistication of attacks on Internet-based systems, cyber security researchers have increasingly been turning to the use of advanced analytics techniques, including the use of machine learning (ML). One common disadvantage of most research works on practical use of ML in cyber security is that they assume stationary processes and datasets. However, in modern-day cyber security systems - where regular operating conditions as well as the nature and/or manifestation of outside threats are subject to continuous change - traditional approaches to defence based on stationary' methods (including stationary' ML) are no longer appropriate. To attain and sustain a desired performance, modern ML-based cyber security systems need to operate within the framework of dynamic/adaptive decision making. They also need to be built on the concepts of cyber risk management in order to ensure the right balance between security, feasibility and usability three objectives that are often conflicting with one other but ultimately equally important in all real-world cyber systems. The long-term goal of this program is to advance the state of the art in ML-based cyber security research. Specifically, the aim is to develop adaptive ML-based techniques capable of dealing with the inherent dynamicity of cyber security systems, and to do so within the context of cyber risk management, while also considering the possibility of deliberate adversarial attack/influence on the system's decision-making logic. The program will focus on two main application areas: security of Web systems and security of IoT systems. The specific problems addressed within the program will include: detection and mitigation of advanced (human-mimicking) bad bots in dynamic Web systems, detection and mitigation of rouge/misbehaving devices in IoT systems, and protection of user privacy in IoT systems. The program will provide state-of-the-art contributions to cyber security as well as applied machine learning research. The program is also of great practical significance due to its focus on the development of attack-resilient real-world cyber systems. Finally, the program will provide opportunity for training of HQP in both cyber security and machine learning - two areas that are identified as critically important for Canadian IT industry and its overall economy.
为了应对对基于互联网的系统的攻击数量和复杂性的不断增加,网络安全研究人员越来越多地转向使用先进的分析技术,包括使用机器学习(ML)。大多数关于ML在网络安全中的实际应用的研究工作的一个共同缺点是它们假设静态过程和数据集。然而,在现代网络安全系统中,常规操作条件以及外部威胁的性质和/或表现形式不断变化,基于静态方法(包括静态ML)的传统防御方法不再适用。为了达到和维持期望的性能,现代基于ML的网络安全系统需要在动态/自适应决策的框架内运行。它们还需要建立在网络风险管理的概念之上,以确保安全性、可行性和可用性这三个目标之间的正确平衡,这三个目标往往相互冲突,但最终在所有现实世界的网络系统中同等重要。 该计划的长期目标是推进基于ML的网络安全研究的最新水平。具体而言,其目的是开发自适应ML为基础的技术,能够处理网络安全系统的固有动态性,并在网络风险管理的背景下这样做,同时也考虑故意对抗攻击/影响系统的决策逻辑的可能性。该计划将专注于两个主要应用领域:Web系统安全和物联网系统安全。该计划中解决的具体问题将包括:检测和缓解动态Web系统中的高级(模仿人类)不良机器人,检测和缓解物联网系统中的Rouge/行为不端设备,以及保护物联网系统中的用户隐私。 该计划将为网络安全以及应用机器学习研究提供最先进的贡献。该计划还具有重要的实际意义,因为它专注于开发具有攻击弹性的现实世界网络系统。最后,该计划将为HQP提供网络安全和机器学习方面的培训机会-这两个领域被认为对加拿大IT行业及其整体经济至关重要。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vlajic, Natalija其他文献

Detection of malicious and non-malicious website visitors using unsupervised neural network learning
  • DOI:
    10.1016/j.asoc.2012.08.028
  • 发表时间:
    2013-01-01
  • 期刊:
  • 影响因子:
    8.7
  • 作者:
    Stevanovic, Dusan;Vlajic, Natalija;An, Aijun
  • 通讯作者:
    An, Aijun

Vlajic, Natalija的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vlajic, Natalija', 18)}}的其他基金

Adaptive ML-Based Techniques for Vulnerability Assessment, Threat Modeling and Risk Mitigation in Cyber Security
基于自适应机器学习的网络安全漏洞评估、威胁建模和风险缓解技术
  • 批准号:
    DGDND-2020-06450
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    DND/NSERC Discovery Grant Supplement
Adaptive ML-Based Techniques for Vulnerability Assessment, Threat Modeling and Risk Mitigation in Cyber Security
基于自适应机器学习的网络安全漏洞评估、威胁建模和风险缓解技术
  • 批准号:
    RGPIN-2020-06450
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Adaptive ML-Based Techniques for Vulnerability Assessment, Threat Modeling and Risk Mitigation in Cyber Security
基于自适应机器学习的网络安全漏洞评估、威胁建模和风险缓解技术
  • 批准号:
    RGPIN-2020-06450
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Adaptive ML-Based Techniques for Vulnerability Assessment, Threat Modeling and Risk Mitigation in Cyber Security
基于自适应机器学习的网络安全漏洞评估、威胁建模和风险缓解技术
  • 批准号:
    DGDND-2020-06450
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    DND/NSERC Discovery Grant Supplement
Adaptive ML-Based Techniques for Vulnerability Assessment, Threat Modeling and Risk Mitigation in Cyber Security
基于自适应机器学习的网络安全漏洞评估、威胁建模和风险缓解技术
  • 批准号:
    DGDND-2020-06450
  • 财政年份:
    2020
  • 资助金额:
    $ 2.11万
  • 项目类别:
    DND/NSERC Discovery Grant Supplement
Application-Layer DDoS in Enterprise Networks and in the Cloud: Comprehensive Detection and Mitigation
企业网络和云中的应用层 DDoS:全面检测和缓解
  • 批准号:
    RGPIN-2015-06159
  • 财政年份:
    2019
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Application-Layer DDoS in Enterprise Networks and in the Cloud: Comprehensive Detection and Mitigation
企业网络和云中的应用层 DDoS:全面检测和缓解
  • 批准号:
    RGPIN-2015-06159
  • 财政年份:
    2018
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Application-Layer DDoS in Enterprise Networks and in the Cloud: Comprehensive Detection and Mitigation
企业网络和云中的应用层 DDoS:全面检测和缓解
  • 批准号:
    RGPIN-2015-06159
  • 财政年份:
    2017
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Application-Layer DDoS in Enterprise Networks and in the Cloud: Comprehensive Detection and Mitigation
企业网络和云中的应用层 DDoS:全面检测和缓解
  • 批准号:
    RGPIN-2015-06159
  • 财政年份:
    2016
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Application-Layer DDoS in Enterprise Networks and in the Cloud: Comprehensive Detection and Mitigation
企业网络和云中的应用层 DDoS:全面检测和缓解
  • 批准号:
    RGPIN-2015-06159
  • 财政年份:
    2015
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

融合超声、双参数MRI及临床相关参数构建PSA 4~20ng/mL区段前列腺癌可视化预测模型的研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
“DFT+ML”协同探索原子精确金纳米团簇的类酶催化性质
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
机器学习力场EEM-ML的构建及离子液体基电解液离子状态和离子传输的研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0 万元
  • 项目类别:
    面上项目
表面增强拉曼光谱技术探究tRNA异戊烯基转移酶提高ML210 药效 的调控机制
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
ML-11调控斜纹夜蛾Toll信号途径抑制AcMNPV感染的分子机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
脂质识别蛋白ML调控褐飞虱若虫发育与雌虫生殖的分子机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
昆虫Toll-ML信号通路调控宿主抵抗杆状病毒侵染的分子机制
  • 批准号:
    U22A20488
  • 批准年份:
    2022
  • 资助金额:
    257.00 万元
  • 项目类别:
    联合基金项目
基于ML-MCTDH的多原子分子表面反应量子动力学算法开发和应用
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
水稻耐直播相关基因ML1的功能验证及作用机理研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
泛素特异性蛋白酶1抑制剂ML323对非小细胞肺癌免疫微环境的激活及对CD318 CAR-T细胞的增效作用研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

COMET: Communications Enabled, AI/ML based Digital Twins for Smart city Logistics and Last Mile applications
COMET:支持通信、基于 AI/ML 的数字孪生,用于智慧城市物流和最后一英里应用
  • 批准号:
    10099265
  • 财政年份:
    2024
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Collaborative R&D
Developing ML-based models to estimate flood and sediment response time for tropical re gions
开发基于机器学习的模型来估计热带地区的洪水和沉积物响应时间
  • 批准号:
    23KF0258
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Collaborative Research: CDS&E: Charge-density based ML framework for efficient exploration and property predictions in the large phase space of concentrated materials
合作研究:CDS
  • 批准号:
    2302763
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Continuing Grant
Collaborative Research: CDS&E: Charge-density based ML framework for efficient exploration and property predictions in the large phase space of concentrated materials
合作研究:CDS
  • 批准号:
    2302764
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Continuing Grant
Machine Learning based Geospatial Sensitivity Analysis Tool (ML-GeoSAT) for Gross Exposure to Climate-Related Risks
基于机器学习的地理空间敏感性分析工具 (ML-GeoSAT),用于应对气候相关风险的总体暴露
  • 批准号:
    10031472
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Small Business Research Initiative
A Comprehensive Framework for the Automatic Evaluation of the Quality of ML-based Software Systems
基于机器学习的软件系统质量自动评估的综合框架
  • 批准号:
    561420-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Alliance Grants
Multiscale, Multi-fidelity and Multiphysics Bayesian Neural Network (BNN) Machine Learning (ML) Surrogate Models for Modelling Design Based Accidents
用于基于事故建模设计的多尺度、多保真度和多物理场贝叶斯神经网络 (BNN) 机器学习 (ML) 替代模型
  • 批准号:
    2764855
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Studentship
ML-based DPD for Wideband PA Linearization in mMIMO systems
基于 ML 的 DPD,用于 mMIMO 系统中的宽带 PA 线性化
  • 批准号:
    573751-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    University Undergraduate Student Research Awards
Adaptive ML-Based Techniques for Vulnerability Assessment, Threat Modeling and Risk Mitigation in Cyber Security
基于自适应机器学习的网络安全漏洞评估、威胁建模和风险缓解技术
  • 批准号:
    DGDND-2020-06450
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    DND/NSERC Discovery Grant Supplement
Adaptive ML-Based Techniques for Vulnerability Assessment, Threat Modeling and Risk Mitigation in Cyber Security
基于自适应机器学习的网络安全漏洞评估、威胁建模和风险缓解技术
  • 批准号:
    RGPIN-2020-06450
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了