Analysis and modelling of steel hot rolling assisted by machine learning
机器学习辅助的钢材热轧分析与建模
基本信息
- 批准号:543584-2019
- 负责人:
- 金额:$ 7.39万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Collaborative Research and Development Grants
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Hot deformation is a key stage in the manufacturing of steel sheet, the requirement at the end of this stage being thickness control. The Algoma hot rolling mill has a conventional set up of seven rolling 'stands' positioned in a line, one after the other. The cast steel 'strand' is heated to a high temperature, and passes through these stands, undergoing thickness reduction at each stand, with the required thickness achieved by the last stand. Because the travel time through all these stands is very short, the roll gaps of each stand has to be pre-set before rolling. No matter how 'rigid' the rolling stands are, the roll gaps will always widen because, even at high temperatures, steel is very strong. To pre-set the roll gap, an accurate prediction of the strength of the steel is performed by a mathematical mill 'model', which is conventionally based on predictions of how the microstructure and the temperature changes at each stand. The mill model is semi-empirical; thus, whenever the steel is rolled, the measured rolling load can be used to improve the prediction of the models. A completely empirical approach to mill modelling is based on machine learning. Here, the model is generated 'purely' based on measured data inputs, such as roll speed. No knowledge of the physics of the process is required. Machine learning means that the model is developed that links the data 'intuitively' as opposed to a purely statistical approach. This proposal builds on a machine learning model recently developed for the Algoma for strip. The first iteration of the machine learning model is far superior to the current Algoma mill model However, predictions for the first rolling stands were not as accurate as for the rest to the stands. Also, analysis of the model revealed some very metallurgically puzzling correlations between process parameters and the rolling loads. In this proposal, we will improve the predictions for the initial rolling stands. We will also seek to understand the aforementioned process/rolling load correlations in order to gain further insight into the metallurgy of the process. We will further improve the model by developing algorithms that are specific to the Algoma process. Finally, we will generate a model that can predict mechanical properties of the as-hot rolled strip from rolling process parameters.
热变形是钢板制造中的关键阶段,在该阶段结束时的要求是厚度控制。 阿尔戈马热轧机有一个传统的设置七个轧制“站”定位在一条线上,一个接一个。 铸钢“连铸坯”被加热到高温,然后通过这些机架,在每个机架上进行减薄,最后一个机架达到所需的厚度。由于通过所有这些机架的行程时间非常短,因此每个机架的辊缝必须在轧制前预先设定。 无论轧制机架多么“刚性”,辊缝总是会变大,因为即使在高温下,钢也非常坚固。 为了预先设定辊缝,通过数学轧机“模型”对钢的强度进行精确预测,该模型通常基于对每个机架的显微组织和温度变化的预测。轧机模型是半经验的;因此,无论何时轧制钢,测量的轧制负荷都可以用于改进模型的预测。 轧机建模的完全经验方法基于机器学习。 在这里,模型是“纯粹”基于测量数据输入(如辊速)生成的。 不需要过程的物理知识。机器学习意味着开发的模型可以“直观地”链接数据,而不是纯粹的统计方法。 该建议建立在最近开发的阿尔戈马的机器学习模型上。 机器学习模型的第一次迭代远远上级当前的阿尔戈马轧机模型,但是,对第一个轧制机架的预测不如对其余机架的预测准确。 此外,模型的分析揭示了一些非常令人困惑的工艺参数和轧制负荷之间的相关性。 在本建议中,我们将改进对初始轧制机架的预测。 我们还将试图了解上述过程/轧制负荷的相关性,以便进一步了解该过程的冶金学。 我们将通过开发特定于阿尔戈马过程的算法来进一步改进该模型。 最后,我们将生成一个模型,可以预测热轧带钢的轧制工艺参数的机械性能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yue, Stephen其他文献
Improving the strength and corrosion resistance of 316L stainless steel for biomedical applications using cold spray
- DOI:
10.1016/j.surfcoat.2012.11.061 - 发表时间:
2013-02-15 - 期刊:
- 影响因子:5.4
- 作者:
AL-Mangour, Bandar;Mongrain, Rosaire;Yue, Stephen - 通讯作者:
Yue, Stephen
Energy absorption during pulsed electron beam spot melting of 304 stainless steel: Monte-Carlo simulations and in-situ temperature measurements
- DOI:
10.1016/j.vacuum.2017.04.039 - 发表时间:
2017-08-01 - 期刊:
- 影响因子:4
- 作者:
Carriere, P. R.;Yue, Stephen - 通讯作者:
Yue, Stephen
Development of hybrid metallic coatings on carbon fiber-reinforced polymers (CFRPs) by cold spray deposition of copper-assisted copper electroplating process
- DOI:
10.1016/j.surfcoat.2020.126231 - 发表时间:
2020-10-25 - 期刊:
- 影响因子:5.4
- 作者:
Fallah, Panteha;Rajagopalan, Sriraman;Yue, Stephen - 通讯作者:
Yue, Stephen
Development of 3rd generation AHSS with medium Mn content alloying compositions
- DOI:
10.1016/j.msea.2012.11.113 - 发表时间:
2013-03-01 - 期刊:
- 影响因子:6.4
- 作者:
Aydin, Huseyin;Essadiqi, Elhachmi;Yue, Stephen - 通讯作者:
Yue, Stephen
Effect of Heat Treatment on the Microstructure and Mechanical Properties of Stainless Steel 316L Coatings Produced by Cold Spray for Biomedical Applications
- DOI:
10.1007/s11666-013-0053-2 - 发表时间:
2014-04-01 - 期刊:
- 影响因子:3.1
- 作者:
AL-Mangour, Bandar;Phuong Vo;Yue, Stephen - 通讯作者:
Yue, Stephen
Yue, Stephen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yue, Stephen', 18)}}的其他基金
Improving the hydrogen embrittlement resistance of quench and tempered high strength steels used as oil country tubular goods with niobium alloying additions
添加铌合金提高油井管材用调质高强度钢的抗氢脆性能
- 批准号:
556549-2020 - 财政年份:2021
- 资助金额:
$ 7.39万 - 项目类别:
Alliance Grants
Incremental manufacturing platform for the fabrication of lightweight high-strength aluminum vehicle structures
用于制造轻质高强度铝制车辆结构的增量制造平台
- 批准号:
571071-2021 - 财政年份:2021
- 资助金额:
$ 7.39万 - 项目类别:
Alliance Grants
Effects of powder and process parameters on the ductility of cold spray copper coatings for the corrosion protection of used fuel storage containers.
粉末和工艺参数对用于旧燃料储存容器腐蚀保护的冷喷涂铜涂层延展性的影响。
- 批准号:
538346-2018 - 财政年份:2021
- 资助金额:
$ 7.39万 - 项目类别:
Collaborative Research and Development Grants
Improving the hydrogen embrittlement resistance of quench and tempered high strength steels used as oil country tubular goods with niobium alloying additions
添加铌合金提高油井管材用调质高强度钢的抗氢脆性能
- 批准号:
556549-2020 - 财政年份:2020
- 资助金额:
$ 7.39万 - 项目类别:
Alliance Grants
Mechanical properties of thin wall specimens produced by additive manufacturing methods
增材制造方法生产的薄壁试样的机械性能
- 批准号:
556499-2020 - 财政年份:2020
- 资助金额:
$ 7.39万 - 项目类别:
Alliance Grants
Development and validation of a SARS-CoV-2 antiviral coatings for high-touch critical surfaces
用于高接触关键表面的 SARS-CoV-2 抗病毒涂层的开发和验证
- 批准号:
554903-2020 - 财政年份:2020
- 资助金额:
$ 7.39万 - 项目类别:
Alliance Grants
Effects of powder and process parameters on the ductility of cold spray copper coatings for the corrosion protection of used fuel storage containers.
粉末和工艺参数对用于旧燃料储存容器腐蚀保护的冷喷涂铜涂层延展性的影响。
- 批准号:
538346-2018 - 财政年份:2020
- 资助金额:
$ 7.39万 - 项目类别:
Collaborative Research and Development Grants
Analysis and modelling of steel hot rolling assisted by machine learning
机器学习辅助的钢材热轧分析与建模
- 批准号:
543584-2019 - 财政年份:2020
- 资助金额:
$ 7.39万 - 项目类别:
Collaborative Research and Development Grants
NSERC CREATE in Competitive Manufacturing for the Aerospace Industry: Technology and Design
NSERC CREATE 航空航天工业竞争性制造:技术与设计
- 批准号:
449343-2014 - 财政年份:2019
- 资助金额:
$ 7.39万 - 项目类别:
Collaborative Research and Training Experience
Effects of powder and process parameters on the ductility of cold spray copper coatings for the corrosion protection of used fuel storage containers.
粉末和工艺参数对用于旧燃料储存容器腐蚀保护的冷喷涂铜涂层延展性的影响。
- 批准号:
538346-2018 - 财政年份:2019
- 资助金额:
$ 7.39万 - 项目类别:
Collaborative Research and Development Grants
相似国自然基金
Improving modelling of compact binary evolution.
- 批准号:10903001
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Finite Element Modelling of a Steel Pile Heat Exchanger System
钢桩换热器系统的有限元建模
- 批准号:
574486-2022 - 财政年份:2022
- 资助金额:
$ 7.39万 - 项目类别:
University Undergraduate Student Research Awards
Failure of steel sandwich structures in compression: Modelling and testing
钢夹层结构受压失效:建模和测试
- 批准号:
RGPIN-2017-04509 - 财政年份:2022
- 资助金额:
$ 7.39万 - 项目类别:
Discovery Grants Program - Individual
Failure of steel sandwich structures in compression: Modelling and testing
钢夹层结构受压失效:建模和测试
- 批准号:
RGPIN-2017-04509 - 财政年份:2021
- 资助金额:
$ 7.39万 - 项目类别:
Discovery Grants Program - Individual
Modelling Heat Transfer Coefficient in Hot Forming Die Quenching of Boron-Manganese Steel
硼锰钢热成型模具淬火传热系数建模
- 批准号:
566092-2021 - 财政年份:2021
- 资助金额:
$ 7.39万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Failure of steel sandwich structures in compression: Modelling and testing
钢夹层结构受压失效:建模和测试
- 批准号:
RGPIN-2017-04509 - 财政年份:2020
- 资助金额:
$ 7.39万 - 项目类别:
Discovery Grants Program - Individual
Analysis and modelling of steel hot rolling assisted by machine learning
机器学习辅助的钢材热轧分析与建模
- 批准号:
543584-2019 - 财政年份:2020
- 资助金额:
$ 7.39万 - 项目类别:
Collaborative Research and Development Grants
Advanced modelling of complex steel connections
复杂钢连接的高级建模
- 批准号:
554523-2020 - 财政年份:2020
- 资助金额:
$ 7.39万 - 项目类别:
University Undergraduate Student Research Awards
Modelling and Optimization of Helical Steel Piles as In-Ground Heat Exchangers for Ground-Source Heat Pumps (GSHP)
作为地源热泵 (GSHP) 地下热交换器的螺旋钢桩的建模和优化
- 批准号:
542621-2019 - 财政年份:2019
- 资助金额:
$ 7.39万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Modelling the failure of dual phase steel sheets using a meso-scale finite element - cellular automata framework
使用细观尺度有限元元胞自动机框架对双相钢板的失效进行建模
- 批准号:
543726-2019 - 财政年份:2019
- 资助金额:
$ 7.39万 - 项目类别:
Engage Grants Program
Analysis and modelling of steel hot rolling assisted by machine learning
机器学习辅助的钢材热轧分析与建模
- 批准号:
543584-2019 - 财政年份:2019
- 资助金额:
$ 7.39万 - 项目类别:
Collaborative Research and Development Grants