Evaluation of Turbulent Heat Transfer Enhancement in Steam-Cracking Furnace Tubes with Modified Internal Textures
改进内部织构的蒸汽裂解炉管强化湍流传热的评价
基本信息
- 批准号:549243-2019
- 负责人:
- 金额:$ 5.58万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Alliance Grants
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Ethylene is a valuable chemical product essential to Canada's chemical and plastics industries. It is produced by reacting ethane gas and steam at very high temperatures in a steam cracking furnace. An undesirable by-product of the reaction is the gradual deposition of amorphous coke on the reactor walls. The deposits degrade the efficiency of the furnace and result in periodic shut downs of the steam cracking process to remove the coke deposits. Increasing the heat transfer rate from the reactor walls to the gases flowing inside the furnace can reduce the rate of coke formation. Unfortunately, conventional methods for increasing the heat transfer rate also increase the frictional pressure losses in the furnace, which translates into higher operational costs. This research project will investigate new methods for increasing heat transfer rates in ethylene production furnaces that yield only a minimal increase in frictional losses. In collaboration with Quantiam Technologies Inc., researchers from UBC Okanagan and University of Alberta will investigate heat transfer enhancement by placing patterned textures on the inner walls of the reactor. The textures protrude into the turbulent boundary layer and modify the turbulent motions that are responsible for mixing heat and momentum in the gas flow. By using high-fidelity computational fluid dynamics simulations and experimental measurements of the heat transfer and turbulent velocity field, the research project will evaluate the impact of various texture patterns on the heat transfer and frictional losses. The research will advance the current state of fundamental knowledge of turbulent flows with heat transfer. Commercial application of the research findings by Quantiam Technologies Inc. will help reduce the energy requirements and greenhouse gas emissions associated with ethylene production.
乙烯是加拿大化学和塑料工业必不可少的一种有价值的化学产品。它是由乙烷气体和蒸汽在蒸汽裂解炉中在非常高的温度下反应产生的。反应的不希望的副产物是无定形焦炭在反应器壁上的逐渐沉积。这些沉积物降低了炉子的效率,并导致蒸汽裂解过程定期唐斯以去除焦炭沉积物。增加从反应器壁到炉内流动的气体的传热速率可以降低焦炭形成速率。不幸的是,用于增加传热速率的常规方法也增加了炉中的摩擦压力损失,这转化为更高的操作成本。本研究项目将研究提高乙烯生产炉传热速率的新方法,这些方法只会使摩擦损失增加最小。与Quantiam Technologies Inc.合作,来自UBC Okanagan和阿尔伯塔大学的研究人员将通过在反应堆内壁上放置图案纹理来研究传热增强。纹理突出到湍流边界层中,并改变湍流运动,该湍流运动负责混合气流中的热量和动量。通过使用高保真计算流体动力学模拟和传热和湍流速度场的实验测量,该研究项目将评估各种纹理图案对传热和摩擦损失的影响。该研究将推进湍流传热基础知识的现状。Quantiam Technologies Inc.研究成果的商业应用。将有助于减少与乙烯生产相关的能源需求和温室气体排放。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brinkerhoff, Joshua其他文献
Brinkerhoff, Joshua的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brinkerhoff, Joshua', 18)}}的其他基金
Cryogenic Flow Physics to Advance Liquid Hydrogen-Based Aviation
低温流动物理学推动液氢航空发展
- 批准号:
RGPIN-2021-02450 - 财政年份:2022
- 资助金额:
$ 5.58万 - 项目类别:
Discovery Grants Program - Individual
Multi-physics, multi-scale modelling of liquefied natural gas (LNG) in marine shipping and heavy-duty trucking: transport, storage, spill, and atmospheric dispersion
海运和重型卡车运输中液化天然气 (LNG) 的多物理场、多尺度建模:运输、存储、泄漏和大气扩散
- 批准号:
519885-2017 - 财政年份:2021
- 资助金额:
$ 5.58万 - 项目类别:
Collaborative Research and Development Grants
Reduced-Order Models of Wind Farm Blockage and Far-Field Wake Recovery
风电场阻塞和远场尾流恢复的降阶模型
- 批准号:
556326-2020 - 财政年份:2021
- 资助金额:
$ 5.58万 - 项目类别:
Alliance Grants
Cryogenic Flow Physics to Advance Liquid Hydrogen-Based Aviation
低温流动物理学推动液氢航空发展
- 批准号:
RGPIN-2021-02450 - 财政年份:2021
- 资助金额:
$ 5.58万 - 项目类别:
Discovery Grants Program - Individual
Multi-physics, multi-scale modelling of liquefied natural gas (LNG) in marine shipping and heavy-duty trucking: transport, storage, spill, and atmospheric dispersion
海运和重型卡车运输中液化天然气 (LNG) 的多物理场、多尺度建模:运输、存储、泄漏和大气扩散
- 批准号:
519885-2017 - 财政年份:2020
- 资助金额:
$ 5.58万 - 项目类别:
Collaborative Research and Development Grants
Evaluation of Turbulent Heat Transfer Enhancement in Steam-Cracking Furnace Tubes with Modified Internal Textures
改进内部织构的蒸汽裂解炉管强化湍流传热的评价
- 批准号:
549243-2019 - 财政年份:2020
- 资助金额:
$ 5.58万 - 项目类别:
Alliance Grants
Reduced-Order Models of Wind Farm Blockage and Far-Field Wake Recovery
风电场阻塞和远场尾流恢复的降阶模型
- 批准号:
556326-2020 - 财政年份:2020
- 资助金额:
$ 5.58万 - 项目类别:
Alliance Grants
Compressible flow in a novel radial turbo compressor: simulation and experimental validation
新型径向涡轮压缩机中的可压缩流动:模拟和实验验证
- 批准号:
538568-2019 - 财政年份:2019
- 资助金额:
$ 5.58万 - 项目类别:
Engage Grants Program
Towards a General Analytical Model of Aerodynamic and Phase Instabilities in Advanced Fluid Machinery
先进流体机械中空气动力学和相位不稳定性的通用分析模型
- 批准号:
RGPIN-2015-06562 - 财政年份:2019
- 资助金额:
$ 5.58万 - 项目类别:
Discovery Grants Program - Individual
Multi-physics, multi-scale modelling of liquefied natural gas (LNG) in marine shipping and heavy-duty trucking: transport, storage, spill, and atmospheric dispersion
海运和重型卡车运输中液化天然气 (LNG) 的多物理场、多尺度建模:运输、存储、泄漏和大气扩散
- 批准号:
519885-2017 - 财政年份:2019
- 资助金额:
$ 5.58万 - 项目类别:
Collaborative Research and Development Grants
相似海外基金
Topology optimization of turbulent heat transfer surfaces and its validation
湍流传热表面拓扑优化及其验证
- 批准号:
23H01339 - 财政年份:2023
- 资助金额:
$ 5.58万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study on three-dimensional film cooling flow heated by turbulent flow for spacecraft engine heat management
航天器发动机热管理湍流加热三维薄膜冷却流研究
- 批准号:
22H01405 - 财政年份:2022
- 资助金额:
$ 5.58万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Detection and quantification of turbulent flow motion exchanging heat only
仅交换热量的湍流运动的检测和量化
- 批准号:
22K14179 - 财政年份:2022
- 资助金额:
$ 5.58万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
An investigation of the conjugate heat transfer in turbulent natural convection with irregularly rough wall
不规则粗糙壁面湍流自然对流共轭传热研究
- 批准号:
22K03966 - 财政年份:2022
- 资助金额:
$ 5.58万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The ultimate state in turbulent heat transfer - mechanism and demonstration
湍流传热的终极状态——机理与演示
- 批准号:
22H01401 - 财政年份:2022
- 资助金额:
$ 5.58万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Research on turbulent transport for the reduction of divertor heat load
降低偏滤器热负荷的湍流输运研究
- 批准号:
21H01066 - 财政年份:2021
- 资助金额:
$ 5.58万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Three-dimensional super-resolution for realtime prediction of turbulent heat transport
用于实时预测湍流热传输的三维超分辨率
- 批准号:
20H02074 - 财政年份:2020
- 资助金额:
$ 5.58万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Numerical investigation on the mechanisms of turbulent momentum and heat transfers by nonlinear multiscale interaction
非线性多尺度相互作用的湍流动量和传热机制的数值研究
- 批准号:
20K14654 - 财政年份:2020
- 资助金额:
$ 5.58万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Effect of traveling-wave control on fluid flow and heat transfer in turbulent Taylor-Couette flow
行波控制对泰勒-库埃特湍流中流体流动和传热的影响
- 批准号:
20K04259 - 财政年份:2020
- 资助金额:
$ 5.58万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Elucidation of dissimilarity between momentum and heat transport in pulsating turbulent flow toward the development of turbulent heat flux model
阐明脉动湍流中动量和热传递之间的差异,以发展湍流热通量模型
- 批准号:
20J10618 - 财政年份:2020
- 资助金额:
$ 5.58万 - 项目类别:
Grant-in-Aid for JSPS Fellows