Cryogenic Flow Physics to Advance Liquid Hydrogen-Based Aviation
低温流动物理学推动液氢航空发展
基本信息
- 批准号:RGPIN-2021-02450
- 负责人:
- 金额:$ 2.84万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Commercial aviation emits more than 900 million tonnes of carbon dioxide (CO2) each year into the atmosphere, accounting for 3% of total anthropogenic CO2 emissions. If it were a country, commercial aviation would rank just ahead of Germany as the sixth largest emitter of CO2. Aviation must urgently decarbonize to avoid catastrophic climate impacts. Over 70% of emissions come from medium-range flights (2000-4000 km) for which battery electrification remains infeasible for the foreseeable future. Hydrogen presents an alternative route for decarbonizing aviation-it has a large energy density by mass; it can be generated from renewable sources such as wind and solar; it can be combusted in aircraft engines with few modifications; and it can generate electricity directly via a fuel cell. However, hydrogen's low volumetric energy density means that it must be stored as a pressurized gas or cryogenic (ultra-cold) liquid. Per unit energy, liquid hydrogen requires about half the volume, making it most suitable for aviation. Adopting liquid hydrogen as a low-carbon aviation fuel will require significant re-engineering of aviation technologies, mainly due to the complexity associated with its cryogenic state. The interactions of cryogenic conditions with flow turbulence, phase transition, thermal non-equilibrium, geometrical complexities, and interfacial effects are poorly understood, despite the major impacts these processes have on the fuel storage conditions, fuel system layout, and ultimately the aircraft safety and efficiency. Without an in-depth physical understanding of cryogenic flows, liquid hydrogen-based aviation cannot advance. My research program will advance the liquid hydrogen pathway for decarbonising the aviation sector through three parallel activities. First, we will generate new computational fluid dynamics approaches that will be specifically tailored for accurate and robust simulation of cryogenic flow physics, building especially on the strengths of non-continuum approaches such as the lattice Boltzmann method. Second, we will use the developed tools to address fundamental questions that remain unanswered regarding the cryogenic behaviour of liquid hydrogen. Finally, using the insights produced by such investigations, we will develop simple yet physically-realistic models to predict the thermohydraulic behaviour of liquid hydrogen for use in engineering design. My research program will directly impact the aviation industry, enabling innovations in low-carbon aviation systems and supporting the aspirational hydrogen pathway for decarbonizing the aviation sector. It will also promote the development of hydrogen-based technologies in other hard-to-decarbonize sectors, including heavy-duty trucking, rail, and marine transportation. Therefore, the proposed program will support economic and energy diversification efforts within Canada while simultaneously helping Canada reach its urgent environmental and climate goals.
商业航空每年向大气中排放超过9亿吨二氧化碳(CO2),占人为CO2排放总量的3%。如果它是一个国家,商业航空将排在德国之前,成为第六大二氧化碳排放国。航空业必须紧急脱碳,以避免灾难性的气候影响。超过70%的排放来自中程飞行(2000-4000公里),在可预见的未来,电池电气化仍然不可行。氢为航空业的脱碳提供了一种替代途径它具有很大的质量能量密度;它可以由风能和太阳能等可再生能源产生;它可以在飞机发动机中燃烧,只需很少的修改;它可以直接通过燃料电池发电。然而,氢的低体积能量密度意味着它必须作为加压气体或低温(超冷)液体储存。每单位能量,液态氢需要大约一半的体积,使其最适合航空。采用液氢作为低碳航空燃料将需要对航空技术进行重大的重新设计,主要是由于其低温状态的复杂性。尽管低温条件对燃料储存条件、燃料系统布局以及最终对飞机安全性和效率有重大影响,但对低温条件与流动湍流、相变、热不平衡、几何复杂性和界面效应的相互作用了解甚少。没有对低温流动的深入物理理解,液氢航空就无法发展。我的研究计划将通过三个平行的活动推进液氢途径,使航空业脱碳。首先,我们将生成新的计算流体动力学方法,这些方法将专门针对低温流动物理的精确和鲁棒模拟而定制,特别是建立在非连续方法(如晶格玻尔兹曼方法)的优势上。其次,我们将使用开发的工具来解决有关液氢低温行为的基本问题。最后,利用这些调查所产生的见解,我们将开发简单而物理现实的模型来预测工程设计中使用的液氢的热工水力行为。我的研究计划将直接影响航空业,实现低碳航空系统的创新,并支持航空业脱碳的理想氢气途径。它还将促进其他难以脱碳的行业的氢基技术的发展,包括重型卡车运输,铁路和海上运输。因此,拟议的计划将支持加拿大国内的经济和能源多样化努力,同时帮助加拿大实现其紧迫的环境和气候目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brinkerhoff, Joshua其他文献
Brinkerhoff, Joshua的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brinkerhoff, Joshua', 18)}}的其他基金
Evaluation of Turbulent Heat Transfer Enhancement in Steam-Cracking Furnace Tubes with Modified Internal Textures
改进内部织构的蒸汽裂解炉管强化湍流传热的评价
- 批准号:
549243-2019 - 财政年份:2021
- 资助金额:
$ 2.84万 - 项目类别:
Alliance Grants
Multi-physics, multi-scale modelling of liquefied natural gas (LNG) in marine shipping and heavy-duty trucking: transport, storage, spill, and atmospheric dispersion
海运和重型卡车运输中液化天然气 (LNG) 的多物理场、多尺度建模:运输、存储、泄漏和大气扩散
- 批准号:
519885-2017 - 财政年份:2021
- 资助金额:
$ 2.84万 - 项目类别:
Collaborative Research and Development Grants
Reduced-Order Models of Wind Farm Blockage and Far-Field Wake Recovery
风电场阻塞和远场尾流恢复的降阶模型
- 批准号:
556326-2020 - 财政年份:2021
- 资助金额:
$ 2.84万 - 项目类别:
Alliance Grants
Cryogenic Flow Physics to Advance Liquid Hydrogen-Based Aviation
低温流动物理学推动液氢航空发展
- 批准号:
RGPIN-2021-02450 - 财政年份:2021
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
Multi-physics, multi-scale modelling of liquefied natural gas (LNG) in marine shipping and heavy-duty trucking: transport, storage, spill, and atmospheric dispersion
海运和重型卡车运输中液化天然气 (LNG) 的多物理场、多尺度建模:运输、存储、泄漏和大气扩散
- 批准号:
519885-2017 - 财政年份:2020
- 资助金额:
$ 2.84万 - 项目类别:
Collaborative Research and Development Grants
Evaluation of Turbulent Heat Transfer Enhancement in Steam-Cracking Furnace Tubes with Modified Internal Textures
改进内部织构的蒸汽裂解炉管强化湍流传热的评价
- 批准号:
549243-2019 - 财政年份:2020
- 资助金额:
$ 2.84万 - 项目类别:
Alliance Grants
Reduced-Order Models of Wind Farm Blockage and Far-Field Wake Recovery
风电场阻塞和远场尾流恢复的降阶模型
- 批准号:
556326-2020 - 财政年份:2020
- 资助金额:
$ 2.84万 - 项目类别:
Alliance Grants
Compressible flow in a novel radial turbo compressor: simulation and experimental validation
新型径向涡轮压缩机中的可压缩流动:模拟和实验验证
- 批准号:
538568-2019 - 财政年份:2019
- 资助金额:
$ 2.84万 - 项目类别:
Engage Grants Program
Towards a General Analytical Model of Aerodynamic and Phase Instabilities in Advanced Fluid Machinery
先进流体机械中空气动力学和相位不稳定性的通用分析模型
- 批准号:
RGPIN-2015-06562 - 财政年份:2019
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
Multi-physics, multi-scale modelling of liquefied natural gas (LNG) in marine shipping and heavy-duty trucking: transport, storage, spill, and atmospheric dispersion
海运和重型卡车运输中液化天然气 (LNG) 的多物理场、多尺度建模:运输、存储、泄漏和大气扩散
- 批准号:
519885-2017 - 财政年份:2019
- 资助金额:
$ 2.84万 - 项目类别:
Collaborative Research and Development Grants
相似国自然基金
肝硬化患者4D Flow MRI血流动力学与肝脂肪和铁代谢的交互机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于4D Flow MRI 技术联合HA/cRGD-GD-LPs对比剂增强扫描诊断肝纤维化分期的研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于4 D-Flow MRI评估吻合口大小对动静脉瘘的血流动力学以及临床预后的影响
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
构建4D-Flow-CFD仿真模型定量评估肝硬化门静脉血流动力学
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于4D-FLOW MRI实现特发性颅内压增高患者静脉窦无创测压和血流动力学分析
- 批准号:82301457
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
结合4D flow的多模态心脏磁共振成像在肥厚型心肌病中的应用研究
- 批准号:n/a
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
驻高海拔地区铁路建设工程项目员工的Flow体验、国家认同与心理韧性:积极环境心理学视角
- 批准号:72271205
- 批准年份:2022
- 资助金额:44 万元
- 项目类别:面上项目
基于Flow-through流场的双离子嵌入型电容去离子及其动力学调控研究
- 批准号:52009057
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
主动脉瓣介导的血流模式致升主动脉重构的4D Flow MRI可视化预测模型研究
- 批准号:82071991
- 批准年份:2020
- 资助金额:56 万元
- 项目类别:面上项目
基于4D Flow MRI探讨侧支循环影响颈内动脉重塑的机制研究
- 批准号:81801139
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of a Physics-Data Driven Surface Flux Parameterization for Flow in Complex Terrain
开发物理数据驱动的复杂地形流动表面通量参数化
- 批准号:
2336002 - 财政年份:2024
- 资助金额:
$ 2.84万 - 项目类别:
Continuing Grant
CAREER: Understanding the Physics of Turbulent Flow, Erosion and Depositional Patterns in River Systems
职业:了解河流系统中湍流、侵蚀和沉积模式的物理原理
- 批准号:
2239550 - 财政年份:2023
- 资助金额:
$ 2.84万 - 项目类别:
Continuing Grant
Collaborative Research: Physics Informed Real-time Optimal Power Flow
合作研究:基于物理的实时最佳潮流
- 批准号:
2334448 - 财政年份:2023
- 资助金额:
$ 2.84万 - 项目类别:
Standard Grant
CAREER: Continuous Flow Chemistry of Microelectronics Polymers via Combined Physics-based and Machine Learning Models
职业:通过基于物理和机器学习相结合的微电子聚合物的连续流动化学
- 批准号:
2238147 - 财政年份:2023
- 资助金额:
$ 2.84万 - 项目类别:
Continuing Grant
Collaborative Research: Physics Informed Real-time Optimal Power Flow
合作研究:基于物理的实时最佳潮流
- 批准号:
2242930 - 财政年份:2023
- 资助金额:
$ 2.84万 - 项目类别:
Standard Grant
Predicting flood-induced flow and sediment dynamics using data-driven physics-informed models
使用数据驱动的物理模型预测洪水引起的流量和沉积物动力学
- 批准号:
2233986 - 财政年份:2023
- 资助金额:
$ 2.84万 - 项目类别:
Standard Grant
Understanding of the flow physics in an ultimate state of turbulent permeable-channel flow
了解湍流渗透通道流最终状态下的流动物理学
- 批准号:
23KF0116 - 财政年份:2023
- 资助金额:
$ 2.84万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Collaborative Research: Physics Informed Real-time Optimal Power Flow
合作研究:基于物理的实时最佳潮流
- 批准号:
2242931 - 财政年份:2023
- 资助金额:
$ 2.84万 - 项目类别:
Standard Grant
Flow Physics and Vortex-Induced Acoustics in Bio-Inspired Collective Locomotion
仿生集体运动中的流动物理学和涡激声学
- 批准号:
DGECR-2022-00019 - 财政年份:2022
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Launch Supplement
CAREER: Synergistic physics-based and deep learning cardiovascular flow modeling
职业:基于协同物理和深度学习的心血管血流建模
- 批准号:
2247173 - 财政年份:2022
- 资助金额:
$ 2.84万 - 项目类别:
Continuing Grant