Robust Real-Time Optimization for Refinery Process Operations

炼油厂工艺操作的稳健实时优化

基本信息

  • 批准号:
    555566-2020
  • 负责人:
  • 金额:
    $ 1.52万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Alliance Grants
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

The chemical process industry is facing challenges with the intensification of global market competition, more stringent limits in product specifications, pricing pressure and environmental problems. To address those challenges, many large manufacturers are starting to use data analysis to optimize plant operations, improve equipment efficiency and product quality, and reduce energy consumption. Machine learning techniques and new digital technology is driving the process industry companies to collect and analyze the growth of the amount of data. As an integrated energy company and Canada's largest refiner of petroleum products, Imperial Oil is facing challenges in improving overall profitability. One of those challenges is related to making robust process operations decisions under uncertainty in real-time. The present proposal aims to address the above challenge by developing a data-driven robust real-time optimization algorithm for online application in manufacturing facilities. Real-time optimization is the process of optimizing the plant operating conditions online and represents the first level in a typical control hierarchy where the economics of the plant is addressed explicitly. The proposed research project will use big data, machine learning, and robust optimization technology to meet the industry needs. The proposed project will help Imperial Oil optimize the utilization of resources through process systems engineering techniques, so as to improve profitability. Imperial Oil will implement the developed data driven optimization algorithm to its plethora of applications and benefit economically from it. The proposed research will not only benefit Imperial Oil but also benefit Canada through technology transfer to other Canadian manufacturing companies, and through contribution to training HQPs with technique backgrounds that are needed by the oil and gas industry.
随着全球市场竞争的加剧、产品规格限制的日益严格、价格压力和环境问题的加剧,化工过程行业面临着挑战。为了应对这些挑战,许多大型制造商开始使用数据分析来优化工厂运营,提高设备效率和产品质量,并降低能源消耗。机器学习技术和新的数字技术正在推动流程工业企业收集和分析增长的数据量。作为一家综合性能源公司和加拿大最大的石油产品炼油商,帝国石油在提高整体盈利能力方面面临挑战。其中一个挑战是在不确定的情况下实时做出稳健的过程操作决策。本提案旨在通过开发一种数据驱动的稳健实时优化算法来解决上述挑战,该算法适用于制造设施的在线应用。实时优化是在线优化工厂运行条件的过程,代表了典型控制体系中的第一级,其中明确阐述了工厂的经济性。拟议的研究项目将使用大数据、机器学习和稳健优化技术来满足行业需求。拟议中的项目将通过过程系统工程技术帮助帝国石油优化资源利用,从而提高盈利能力。帝国石油将实施开发的数据驱动优化算法,以满足其大量应用,并从经济上受益。拟议的研究不仅将使帝国石油公司受益,还将通过向其他加拿大制造公司转让技术,以及通过为培训具有石油和天然气行业所需技术背景的HQP做出贡献,使加拿大受益。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Li, Zukui其他文献

A Comparative Theoretical and Computational Study on Robust Counterpart Optimization: III. Improving the Quality of Robust Solutions.
关于鲁棒对应物优化的比较理论和计算研究:iii。提高强大解决方案的质量。
A new methodology for the general multiparametric mixed-integer linear programming (MILP) problems
A Comparative Theoretical and Computational Study on Robust Counterpart Optimization: II. Probabilistic Guarantees on Constraint Satisfaction.
Robust optimization for process scheduling under uncertainty
A Comparative Theoretical and Computational Study on Robust Counterpart Optimization: I. Robust Linear Optimization and Robust Mixed Integer Linear Optimization.

Li, Zukui的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Li, Zukui', 18)}}的其他基金

Data-Driven Process Systems Optimization under Uncertain Environment
不确定环境下数据驱动的流程系统优化
  • 批准号:
    RGPIN-2019-04584
  • 财政年份:
    2022
  • 资助金额:
    $ 1.52万
  • 项目类别:
    Discovery Grants Program - Individual
Data-Driven Process Systems Optimization under Uncertain Environment
不确定环境下数据驱动的流程系统优化
  • 批准号:
    RGPIN-2019-04584
  • 财政年份:
    2021
  • 资助金额:
    $ 1.52万
  • 项目类别:
    Discovery Grants Program - Individual
Robust Real-Time Optimization for Refinery Process Operations
炼油厂工艺操作的稳健实时优化
  • 批准号:
    555566-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 1.52万
  • 项目类别:
    Alliance Grants
Data-Driven Process Systems Optimization under Uncertain Environment
不确定环境下数据驱动的流程系统优化
  • 批准号:
    RGPIN-2019-04584
  • 财政年份:
    2020
  • 资助金额:
    $ 1.52万
  • 项目类别:
    Discovery Grants Program - Individual
Pipeline Operations Optimization using Data-Driven Model
使用数据驱动模型优化管道运营
  • 批准号:
    543444-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 1.52万
  • 项目类别:
    Engage Grants Program
Data-Driven Process Systems Optimization under Uncertain Environment
不确定环境下数据驱动的流程系统优化
  • 批准号:
    RGPIN-2019-04584
  • 财政年份:
    2019
  • 资助金额:
    $ 1.52万
  • 项目类别:
    Discovery Grants Program - Individual
Systematic Management of Uncertainties in Process Operations
流程操作中不确定性的系统管理
  • 批准号:
    435906-2013
  • 财政年份:
    2018
  • 资助金额:
    $ 1.52万
  • 项目类别:
    Discovery Grants Program - Individual
Systematic Management of Uncertainties in Process Operations
流程操作中不确定性的系统管理
  • 批准号:
    435906-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 1.52万
  • 项目类别:
    Discovery Grants Program - Individual
Process modeling and control algorithm development for flow metering valve
流量计量阀的过程建模和控制算法开发
  • 批准号:
    522294-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 1.52万
  • 项目类别:
    Engage Grants Program
Systematic Management of Uncertainties in Process Operations
流程操作中不确定性的系统管理
  • 批准号:
    435906-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 1.52万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Immuno-Real Time PCR法精确定量血清MG7抗原及在早期胃癌预警中的价值
  • 批准号:
    30600737
  • 批准年份:
    2006
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
无色ReAl3(BO3)4(Re=Y,Lu)系列晶体紫外倍频性能与器件研究
  • 批准号:
    60608018
  • 批准年份:
    2006
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

NSF-BSF: Real-Time Robust Estimation and Stochastic Control for Dynamic Systems with Additive Heavy-Tailed Uncertainties
NSF-BSF:具有加性重尾不确定性的动态系统的实时鲁棒估计和随机控制
  • 批准号:
    2317583
  • 财政年份:
    2023
  • 资助金额:
    $ 1.52万
  • 项目类别:
    Standard Grant
CAREER: Real-Time, Selective Gas Sensing in Complex Gas Compositions by Molecular Sieving via Robust Two-Dimensional Heterostructures
职业:通过稳健的二维异质结构进行分子筛分,对复杂气体成分进行实时、选择性气体传感
  • 批准号:
    2145549
  • 财政年份:
    2022
  • 资助金额:
    $ 1.52万
  • 项目类别:
    Continuing Grant
Robust Real-Time Optimization for Refinery Process Operations
炼油厂工艺操作的稳健实时优化
  • 批准号:
    555566-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 1.52万
  • 项目类别:
    Alliance Grants
CAREER: Robust Decoding of Neural Command for Real Time Human Machine Interactions
职业:实时人机交互的神经命令的鲁棒解码
  • 批准号:
    2246162
  • 财政年份:
    2022
  • 资助金额:
    $ 1.52万
  • 项目类别:
    Continuing Grant
Robust biomimetic models of human legs to solve high-dimensional real-time control problems
鲁棒的人体腿部仿生模型解决高维实时控制问题
  • 批准号:
    10208921
  • 财政年份:
    2020
  • 资助金额:
    $ 1.52万
  • 项目类别:
Robust Real-Time Optimization for Refinery Process Operations
炼油厂工艺操作的稳健实时优化
  • 批准号:
    555566-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 1.52万
  • 项目类别:
    Alliance Grants
Robust Control and Fidelity Assessment of Real-Time Hybrid Substructuring of Contact Problems
接触问题实时混合子结构的鲁棒控制和保真度评估
  • 批准号:
    450801414
  • 财政年份:
    2020
  • 资助金额:
    $ 1.52万
  • 项目类别:
    Research Grants
Robust Real-Time Thermal Modelling of High-Speed Permanent Magnet Synchronous Machine
高速永磁同步电机的鲁棒实时热建模
  • 批准号:
    2436035
  • 财政年份:
    2020
  • 资助金额:
    $ 1.52万
  • 项目类别:
    Studentship
Robust biomimetic models of human legs to solve high-dimensional real-time control problems
鲁棒的人体腿部仿生模型解决高维实时控制问题
  • 批准号:
    9979392
  • 财政年份:
    2020
  • 资助金额:
    $ 1.52万
  • 项目类别:
OAC Core: Small: Open-Source Robust 4D Reconstruction Framework for Real-Time Dynamic Human Capture
OAC Core:小型:用于实时动态人体捕捉的开源稳健 4D 重建框架
  • 批准号:
    2007661
  • 财政年份:
    2020
  • 资助金额:
    $ 1.52万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了