Innovative methods for road infrastructure digitization
道路基础设施数字化的创新方法
基本信息
- 批准号:561109-2020
- 负责人:
- 金额:$ 3.64万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Alliance Grants
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Connected and Autonomous Vehicles (CAVs) hold the promise to bring about a paradigm shift in transportation safety and mobility. Despite recent advances in the automotive industry/research, a fully autonomous system in complex general road environments has not been fully realized, partially due to the bottlenecks caused by AV technologies. The enormous amount of computations and power required for AVs to operate safely in real-time and at high levels of autonomy is beyond the capabilities of any battery-powered vehicle control system. As such, offloading expensive computation workloads to the infrastructure is an active and trending area of research. Recent efforts and collaborative initiatives between the automotive industry, infrastructure owners, and academia shifted towards supporting CAVs with High Definition Maps and semantic road datasets. This project's ultimate goal is to develop methods to build performance-based semantic layers of high definition Maps. Semantic layers of HD maps contain processed information (e.g., traffic signs, obstacles locations, travel lanes, road edges, speed limits, road curvature, gradient, etc.) that can be directly used by CAVs local computer systems. The outcome of this research will facilitate the testing of several vehicle sensor designs in virtual reality on a digitized replica of existing roads collected using light detection and ranging (LiDAR) scanners. The potential outcomes and benefits to Alberta and Canada of this (and similar) projects cannot be overstated: 1) offer a solution to resolve some of the most significant bottlenecks due to existing CAV technologies (e.g., sensor limitations, dynamic occlusions, etc.); 2) improve workload management of local CAV systems; 3) assist government agencies in testing automakers sensor configurations on existing infrastructure in a virtual environment; 4) help stakeholders make informed decisions regarding smart infrastructure investments; 5) allow Canadians to realize the full potential from CAVs over the next decade; and 6) maintain Alberta and Canada's economic and technological competitiveness.
互联和自动驾驶车辆(CAV)有望带来交通安全和机动性的范式转变。尽管汽车工业/研究最近取得了进展,但在复杂的一般道路环境中还没有完全实现完全自主的系统,部分原因是无人机技术造成的瓶颈。自动驾驶系统安全、实时和高度自主运行所需的巨大计算量和电力,超出了任何电池驱动的车辆控制系统的能力。因此,将昂贵的计算工作负载转移到基础设施是一个活跃且有趋势的研究领域。汽车行业、基础设施所有者和学术界最近的努力和合作倡议转向使用高清晰度地图和语义道路数据集支持CAV。该项目的最终目标是开发方法来构建基于性能的高清地图语义层。高清地图的语义层包含经过处理的信息(例如,交通标志、障碍物位置、行车道、道路边缘、速度限制、道路曲率、坡度等)。可以被骑士队的本地计算机系统直接使用。这项研究的结果将有助于在虚拟现实中测试几种车辆传感器设计,在使用光检测和测距(LiDAR)扫描仪收集的现有道路的数字化复制品上进行测试。该项目(以及类似项目)对艾伯塔省和加拿大的潜在成果和好处怎么强调都不为过:1)提供一个解决方案,解决现有CAV技术带来的一些最重大的瓶颈问题(例如传感器限制、动态闭塞等);2)改善本地CAV系统的工作负荷管理;3)协助政府机构在虚拟环境中测试汽车制造商的现有基础设施;4)帮助利益攸关方就智能基础设施的投资做出明智的决策;5)让加拿大人在未来十年充分发挥CAV的潜力;6)保持艾伯塔省和加拿大的经济和技术竞争力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ElBasyouny, Karim其他文献
ElBasyouny, Karim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ElBasyouny, Karim', 18)}}的其他基金
Integration of Remote Sensing Big Data into the Management and Design of Highway Infrastructures
遥感大数据融入公路基础设施管理和设计
- 批准号:
RGPIN-2019-04576 - 财政年份:2022
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Integration of Remote Sensing Big Data into the Management and Design of Highway Infrastructures
遥感大数据融入公路基础设施管理和设计
- 批准号:
RGPIN-2019-04576 - 财政年份:2021
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
An AI and equity driven framework for mobile photo enforcement deployment
用于移动照片执法部署的人工智能和股权驱动框架
- 批准号:
562466-2021 - 财政年份:2021
- 资助金额:
$ 3.64万 - 项目类别:
Alliance Grants
Innovative methods for road infrastructure digitization
道路基础设施数字化的创新方法
- 批准号:
561109-2020 - 财政年份:2020
- 资助金额:
$ 3.64万 - 项目类别:
Alliance Grants
Integration of Remote Sensing Big Data into the Management and Design of Highway Infrastructures
遥感大数据融入公路基础设施管理和设计
- 批准号:
RGPIN-2019-04576 - 财政年份:2020
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Integration of Remote Sensing Big Data into the Management and Design of Highway Infrastructures
遥感大数据融入公路基础设施管理和设计
- 批准号:
RGPIN-2019-04576 - 财政年份:2019
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Improving safety of urban roads through speed management
通过速度管理提高城市道路安全
- 批准号:
418302-2013 - 财政年份:2018
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Improving safety of urban roads through speed management
通过速度管理提高城市道路安全
- 批准号:
418302-2013 - 财政年份:2017
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Extraction of Spatial Parameters from LiDAR Data and Aerial Photography for Noise Modelling
从 LiDAR 数据和航空摄影中提取空间参数以进行噪声建模
- 批准号:
521863-2017 - 财政年份:2017
- 资助金额:
$ 3.64万 - 项目类别:
Engage Grants Program
Improving safety of urban roads through speed management
通过速度管理提高城市道路安全
- 批准号:
418302-2013 - 财政年份:2016
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
复杂图像处理中的自由非连续问题及其水平集方法研究
- 批准号:60872130
- 批准年份:2008
- 资助金额:28.0 万元
- 项目类别:面上项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A study on methods for evaluating road visibility conditions throughout the day using edge computing
利用边缘计算评估全天道路能见度状况的方法研究
- 批准号:
22KJ0072 - 财政年份:2023
- 资助金额:
$ 3.64万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Paving a Road Map for Integrated Care Evaluation in Canada: A Mixed Methods Evaluation for Patients with Complex Care Needs in Ontario and Alberta
为加拿大综合护理评估铺平路线图:针对安大略省和阿尔伯塔省复杂护理需求患者的混合方法评估
- 批准号:
480450 - 财政年份:2022
- 资助金额:
$ 3.64万 - 项目类别:
Operating Grants
Road Map to Precision Psychiatry: Comprehensive Investigation of Chromosomal Anomalies (PsychMap)
精准精神病学路线图:染色体异常的综合调查 (PsychMap)
- 批准号:
10093553 - 财政年份:2021
- 资助金额:
$ 3.64万 - 项目类别:
Road Map to Precision Psychiatry: Comprehensive Investigation of Chromosomal Anomalies (PsychMap)
精准精神病学路线图:染色体异常的综合调查 (PsychMap)
- 批准号:
10377913 - 财政年份:2021
- 资助金额:
$ 3.64万 - 项目类别:
Road Map to Precision Psychiatry: Comprehensive Investigation of Chromosomal Anomalies (PsychMap)
精准精神病学路线图:染色体异常的综合调查 (PsychMap)
- 批准号:
10576850 - 财政年份:2021
- 资助金额:
$ 3.64万 - 项目类别:
The Effect of COVID-19 Policies on Road Traffic Injury Among Vulnerable Road Users in Canadian Cities
COVID-19 政策对加拿大城市弱势道路使用者道路交通伤害的影响
- 批准号:
442927 - 财政年份:2020
- 资助金额:
$ 3.64万 - 项目类别:
Operating Grants
Advanced optimization methods for road construction
道路建设先进优化方法
- 批准号:
479316-2015 - 财政年份:2020
- 资助金额:
$ 3.64万 - 项目类别:
Collaborative Research and Development Grants
Innovative methods for road infrastructure digitization
道路基础设施数字化的创新方法
- 批准号:
561109-2020 - 财政年份:2020
- 资助金额:
$ 3.64万 - 项目类别:
Alliance Grants
PUPPY Study - Problems Coordinating and Accessing Primary Care for Attached and Unattached Patients Exacerbated During the COVID-19 Pandemic Year: A Longitudinal Mixed Methods Study with Rapid Reporting and Planning for the Road Ahead
PUPPY 研究 - 在 COVID-19 大流行年期间,有伴和无伴患者的协调和获得初级保健的问题加剧:一项纵向混合方法研究,包括快速报告和未来规划
- 批准号:
429917 - 财政年份:2020
- 资助金额:
$ 3.64万 - 项目类别:
Operating Grants
The Road to Resilience: A Mixed Methods Analysis of Stigma and Empowerment in Single and Divorced Mothers in Turkey
韧性之路:土耳其单身和离婚母亲的耻辱和赋权的混合方法分析
- 批准号:
2451017 - 财政年份:2020
- 资助金额:
$ 3.64万 - 项目类别:
Studentship