Predicting Risks of Forest Fires using Federated Machine Learning Methods

使用联合机器学习方法预测森林火灾风险

基本信息

  • 批准号:
    570503-2021
  • 负责人:
  • 金额:
    $ 12.81万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Alliance Grants
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Globally, the livelihoods of hundreds of millions of people directly depend upon their local forest ecosystems. However, according to data from the Canadian National Forestry Database, over 8,500 forest fires occurred each year between 1980-2020, burning more than 2 million hectares every year. Forest fires triggered insured losses of almost CAD 5 billion between 2003-2017. Therefore, it is important to develop efficient, integrated forest fire management (IFFM) systems to reduce the losses. One of the most important components of an IFFM system is the forecasting of forest fire danger conditions (FFDC), namely, detecting fires and predicting their spread. In general, FFDCs are highly dependent on meteorological variables (MV), biophysical variables (BV), and topography (TG) of forests, and accurately predicting FFDCs becomes a complex task. Existing FFDC prediction methodologies use only one or two kinds of variables, leading to less accurate predictions. The researchers and industry partners will design a software framework for predicting FFDCs using all the three kinds of data, namely, MV, BV, and TG, for better accuracy. We will apply machine/deep learning methods to predict FFDCs because of the complex interplay among the three kinds of data in igniting and spreading forest fires. Our framework will result in better prediction accuracy because it considers all the three types of data and multiple optimized models. In addition, federated machine learning methods will accelerate the prediction process, giving firefighters extra valuable time to manage fires. We will validate the system by using publicly available data for Ontario and Alberta. The expertise gained from the proposed system will expand the portfolios of the two partners who will offer the research outcomes as new, expanded service offerings to their clients -- public and private sector companies who focus on fighting forest fires in Canada. The project will have a tremendous impact on both the economy and society of Canada, and the research can also be leveraged for the study of floods and climate change. HQP trained as part of the program will fill roles in the growing sectors of natural resource management and climate change.
在全球范围内,数亿人的生计直接依赖于当地的森林生态系统。然而,根据加拿大国家林业数据库的数据,1980年至2020年期间,每年发生8,500多起森林火灾,每年烧毁200多万公顷土地。2003年至2017年间,森林火灾引发了近50亿加元的保险损失。因此,发展高效、综合的森林火灾管理系统以减少损失是非常重要的。IFFM系统最重要的组成部分之一是预测森林火险状况,即探测火灾并预测其蔓延。一般来说,FFDC高度依赖于气象变量(MV),生物物理变量(BV)和地形(TG)的森林,准确预测FFDC成为一项复杂的任务。现有的FFDC预测方法仅使用一种或两种变量,导致预测不太准确。研究人员和行业合作伙伴将设计一个软件框架,用于使用所有三种数据(即MV,BV和TG)预测FFDC,以提高准确性。我们将应用机器/深度学习方法来预测FFDC,因为这三种数据在点燃和蔓延森林火灾中存在复杂的相互作用。我们的框架将导致更好的预测准确性,因为它考虑了所有三种类型的数据和多个优化模型。此外,联邦机器学习方法将加速预测过程,为消防员提供额外的宝贵时间来管理火灾。我们将通过使用安大略和阿尔伯塔的公开数据来验证该系统。从拟议的系统中获得的专门知识将扩大这两个伙伴的组合,它们将把研究成果作为新的、扩大的服务提供给它们的客户-在加拿大重点扑灭森林火灾的公共和私营部门公司。该项目将对加拿大的经济和社会产生巨大影响,研究也可以用于洪水和气候变化的研究。作为该计划的一部分,HQP将在自然资源管理和气候变化等日益增长的部门中发挥作用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Naik, Kshirasagar其他文献

Smartphone processor architecture, operations, and functions: current state-of-the-art and future outlook: energy performance trade-off Energy-performance trade-off for smartphone processors
  • DOI:
    10.1007/s11227-020-03312-z
  • 发表时间:
    2020-05-16
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Ginny;Kumar, Chiranjeev;Naik, Kshirasagar
  • 通讯作者:
    Naik, Kshirasagar
A Performance Comparison of Delay-Tolerant Network Routing Protocols
  • DOI:
    10.1109/mnet.2016.7437024
  • 发表时间:
    2016-03-01
  • 期刊:
  • 影响因子:
    9.3
  • 作者:
    Abdelkader, Tamer;Naik, Kshirasagar;Srivastava, Vineet
  • 通讯作者:
    Srivastava, Vineet
Vehicular Networks for a Greener Environment: A Survey
  • DOI:
    10.1109/surv.2012.101912.00184
  • 发表时间:
    2013-01-01
  • 期刊:
  • 影响因子:
    35.6
  • 作者:
    Alsabaan, Maazen;Alasmary, Waleed;Naik, Kshirasagar
  • 通讯作者:
    Naik, Kshirasagar
ID-CEPPA: Identity-based Computationally Efficient Privacy-Preserving Authentication scheme for vehicle-to-vehicle communications
  • DOI:
    10.1016/j.sysarc.2021.102387
  • 发表时间:
    2022-01-11
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Bansal, Udit;Kar, Jayaprakash;Naik, Kshirasagar
  • 通讯作者:
    Naik, Kshirasagar
Optimization of Fuel Cost and Emissions Using V2V Communications

Naik, Kshirasagar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Naik, Kshirasagar', 18)}}的其他基金

An IoT security framework using deep/machine learning techniques for smart offices
使用深度/机器学习技术实现智能办公室的物联网安全框架
  • 批准号:
    563132-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 12.81万
  • 项目类别:
    Alliance Grants
Mathematical Models of Mobile Computing Devices and Application Software
移动计算设备和应用软件的数学模型
  • 批准号:
    RGPIN-2017-04238
  • 财政年份:
    2021
  • 资助金额:
    $ 12.81万
  • 项目类别:
    Discovery Grants Program - Individual
Sustainable wireless sensor networks for long term monitoring of corrosion of water pipes
用于长期监测水管腐蚀的可持续无线传感器网络
  • 批准号:
    528276-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 12.81万
  • 项目类别:
    Collaborative Research and Development Grants
Mathematical Models of Mobile Computing Devices and Application Software
移动计算设备和应用软件的数学模型
  • 批准号:
    RGPIN-2017-04238
  • 财政年份:
    2020
  • 资助金额:
    $ 12.81万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Models of Mobile Computing Devices and Application Software
移动计算设备和应用软件的数学模型
  • 批准号:
    RGPIN-2017-04238
  • 财政年份:
    2019
  • 资助金额:
    $ 12.81万
  • 项目类别:
    Discovery Grants Program - Individual
Sustainable wireless sensor networks for long term monitoring of corrosion of water pipes
用于长期监测水管腐蚀的可持续无线传感器网络
  • 批准号:
    528276-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 12.81万
  • 项目类别:
    Collaborative Research and Development Grants
Sustainable wireless sensor networks for long term monitoring of corrosion of water pipes
用于长期监测水管腐蚀的可持续无线传感器网络
  • 批准号:
    528276-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 12.81万
  • 项目类别:
    Collaborative Research and Development Grants
Mathematical Models of Mobile Computing Devices and Application Software
移动计算设备和应用软件的数学模型
  • 批准号:
    RGPIN-2017-04238
  • 财政年份:
    2018
  • 资助金额:
    $ 12.81万
  • 项目类别:
    Discovery Grants Program - Individual
Evaluation and Ranking of Electrical Transmission Reinforcement Options Using Machine Learning Techniques
使用机器学习技术对电力传输加固方案进行评估和排名
  • 批准号:
    520329-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 12.81万
  • 项目类别:
    Engage Grants Program
Mathematical Models of Mobile Computing Devices and Application Software
移动计算设备和应用软件的数学模型
  • 批准号:
    RGPIN-2017-04238
  • 财政年份:
    2017
  • 资助金额:
    $ 12.81万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Collaborative Research: BoCP-Implementation: Integrating Traits, Phylogenies and Distributional Data to Forecast Risks and Resilience of North American Plants
合作研究:BoCP-实施:整合性状、系统发育和分布数据来预测北美植物的风险和恢复力
  • 批准号:
    2325835
  • 财政年份:
    2024
  • 资助金额:
    $ 12.81万
  • 项目类别:
    Standard Grant
Contemporary social and environmental risks for youth offending
当代青少年犯罪的社会和环境风险
  • 批准号:
    DE240100066
  • 财政年份:
    2024
  • 资助金额:
    $ 12.81万
  • 项目类别:
    Discovery Early Career Researcher Award
Towards Evaluating and Managing Risks Associated with Legacy Wells and Offshore Gas Storage in Scotland
评估和管理与苏格兰传统油井和海上天然气储存相关的风险
  • 批准号:
    2902920
  • 财政年份:
    2024
  • 资助金额:
    $ 12.81万
  • 项目类别:
    Studentship
Collaborative Research: BoCP-Implementation: Integrating Traits, Phylogenies and Distributional Data to Forecast Risks and Resilience of North American Plants
合作研究:BoCP-实施:整合性状、系统发育和分布数据来预测北美植物的风险和恢复力
  • 批准号:
    2325837
  • 财政年份:
    2024
  • 资助金额:
    $ 12.81万
  • 项目类别:
    Standard Grant
EPIC-Oxford: benefits and risks of plant-based diets
EPIC-Oxford:植物性饮食的好处和风险
  • 批准号:
    MR/Y013662/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12.81万
  • 项目类别:
    Research Grant
An explainability oriented approach to manage dependent supply chain risks
一种以可解释性为导向的方法来管理相关供应链风险
  • 批准号:
    LP230100379
  • 财政年份:
    2024
  • 资助金额:
    $ 12.81万
  • 项目类别:
    Linkage Projects
AdvisoryNetPESTS: EU ADVISORY NETworks to reduce the use and risks of PESTicides.
AdvisoryNetPESTS:欧盟咨询网络,旨在减少杀虫剂的使用和风险。
  • 批准号:
    10098938
  • 财政年份:
    2024
  • 资助金额:
    $ 12.81万
  • 项目类别:
    EU-Funded
Reducing Global Catastrophic Risks from Unseen Climate Extremes
减少未曾见过的极端气候带来的全球灾难性风险
  • 批准号:
    MR/X03450X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12.81万
  • 项目类别:
    Fellowship
Co-DiRECT Nepal: a community-based diet programme for remission of type 2 diabetes and amelioration of non-communicable disease risks
Co-DiRECT 尼泊尔:旨在缓解 2 型糖尿病和改善非传染性疾病风险的社区饮食计划
  • 批准号:
    MR/Z000513/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12.81万
  • 项目类别:
    Research Grant
Collaborative Research: BoCP-Implementation: Integrating Traits, Phylogenies and Distributional Data to Forecast Risks and Resilience of North American Plants
合作研究:BoCP-实施:整合性状、系统发育和分布数据来预测北美植物的风险和恢复力
  • 批准号:
    2325838
  • 财政年份:
    2024
  • 资助金额:
    $ 12.81万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了