Mathematical Models of Mobile Computing Devices and Application Software
移动计算设备和应用软件的数学模型
基本信息
- 批准号:RGPIN-2017-04238
- 负责人:
- 金额:$ 2.4万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2017
- 资助国家:加拿大
- 起止时间:2017-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The widespread use of mobile devices and applications (apps) is translating into large-scale economic benefits for Canadians. According to a 2016 report prepared by the market research firm Nordicity for the Canadian Wireless Telecommunications Association, companies in the Canadian wireless communications ecosystem generated $48.96 billion in revenue in 2015. Smartphones, embedded devices, wearable devices, and wireless sensors are examples of mobile devices. They play key roles in emerging applications: personal communication, financial transactions, asset monitoring, autonomous vehicles, drone-based monitoring of national borders and conflict zones, and sensing and communications performed by the armed forces. Mobile devices have become increasingly powerful, with feature-rich operating systems, multi-core processors, gigabytes of memory, multi-radio interfaces, and an array of sensors. However, unlike desktops, mobile devices run on batteries and operate in harsh communication environments. Among the key challenges in designing robust mobile apps are modeling and identification of malicious code, modeling of the power cost of individual apps and devices, designing test suites for performance testing, and extending battery life.
移动设备和应用程序的广泛使用正在为加拿大人带来大规模的经济效益。根据市场研究公司Nordicity为加拿大无线通信协会(Canadian Wireless Telecommunications Association)准备的2016年报告,加拿大无线通信生态系统中的公司在2015年创造了489.6亿美元的收入。智能手机、嵌入式设备、可穿戴设备和无线传感器都是移动设备的例子。它们在新兴应用中发挥着关键作用:个人通信、金融交易、资产监控、自动驾驶汽车、基于无人机的国界和冲突地区监控,以及武装部队执行的传感和通信。移动设备变得越来越强大,拥有功能丰富的操作系统、多核处理器、千兆内存、多无线电接口和一系列传感器。然而,与台式电脑不同,移动设备依靠电池运行,并且在恶劣的通信环境中运行。设计健壮的移动应用程序的主要挑战包括恶意代码的建模和识别、单个应用程序和设备的功耗建模、性能测试的测试套件设计以及延长电池寿命。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Naik, Kshirasagar其他文献
Smartphone processor architecture, operations, and functions: current state-of-the-art and future outlook: energy performance trade-off Energy-performance trade-off for smartphone processors
- DOI:
10.1007/s11227-020-03312-z - 发表时间:
2020-05-16 - 期刊:
- 影响因子:3.3
- 作者:
Ginny;Kumar, Chiranjeev;Naik, Kshirasagar - 通讯作者:
Naik, Kshirasagar
A Performance Comparison of Delay-Tolerant Network Routing Protocols
- DOI:
10.1109/mnet.2016.7437024 - 发表时间:
2016-03-01 - 期刊:
- 影响因子:9.3
- 作者:
Abdelkader, Tamer;Naik, Kshirasagar;Srivastava, Vineet - 通讯作者:
Srivastava, Vineet
Vehicular Networks for a Greener Environment: A Survey
- DOI:
10.1109/surv.2012.101912.00184 - 发表时间:
2013-01-01 - 期刊:
- 影响因子:35.6
- 作者:
Alsabaan, Maazen;Alasmary, Waleed;Naik, Kshirasagar - 通讯作者:
Naik, Kshirasagar
ID-CEPPA: Identity-based Computationally Efficient Privacy-Preserving Authentication scheme for vehicle-to-vehicle communications
- DOI:
10.1016/j.sysarc.2021.102387 - 发表时间:
2022-01-11 - 期刊:
- 影响因子:4.5
- 作者:
Bansal, Udit;Kar, Jayaprakash;Naik, Kshirasagar - 通讯作者:
Naik, Kshirasagar
Optimization of Fuel Cost and Emissions Using V2V Communications
- DOI:
10.1109/tits.2013.2262175 - 发表时间:
2013-09-01 - 期刊:
- 影响因子:8.5
- 作者:
Alsabaan, Maazen;Naik, Kshirasagar;Khalifa, Tarek - 通讯作者:
Khalifa, Tarek
Naik, Kshirasagar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Naik, Kshirasagar', 18)}}的其他基金
Predicting Risks of Forest Fires using Federated Machine Learning Methods
使用联合机器学习方法预测森林火灾风险
- 批准号:
570503-2021 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Alliance Grants
An IoT security framework using deep/machine learning techniques for smart offices
使用深度/机器学习技术实现智能办公室的物联网安全框架
- 批准号:
563132-2021 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Alliance Grants
Mathematical Models of Mobile Computing Devices and Application Software
移动计算设备和应用软件的数学模型
- 批准号:
RGPIN-2017-04238 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Sustainable wireless sensor networks for long term monitoring of corrosion of water pipes
用于长期监测水管腐蚀的可持续无线传感器网络
- 批准号:
528276-2018 - 财政年份:2020
- 资助金额:
$ 2.4万 - 项目类别:
Collaborative Research and Development Grants
Mathematical Models of Mobile Computing Devices and Application Software
移动计算设备和应用软件的数学模型
- 批准号:
RGPIN-2017-04238 - 财政年份:2020
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Mathematical Models of Mobile Computing Devices and Application Software
移动计算设备和应用软件的数学模型
- 批准号:
RGPIN-2017-04238 - 财政年份:2019
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Sustainable wireless sensor networks for long term monitoring of corrosion of water pipes
用于长期监测水管腐蚀的可持续无线传感器网络
- 批准号:
528276-2018 - 财政年份:2019
- 资助金额:
$ 2.4万 - 项目类别:
Collaborative Research and Development Grants
Sustainable wireless sensor networks for long term monitoring of corrosion of water pipes
用于长期监测水管腐蚀的可持续无线传感器网络
- 批准号:
528276-2018 - 财政年份:2018
- 资助金额:
$ 2.4万 - 项目类别:
Collaborative Research and Development Grants
Mathematical Models of Mobile Computing Devices and Application Software
移动计算设备和应用软件的数学模型
- 批准号:
RGPIN-2017-04238 - 财政年份:2018
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Evaluation and Ranking of Electrical Transmission Reinforcement Options Using Machine Learning Techniques
使用机器学习技术对电力传输加固方案进行评估和排名
- 批准号:
520329-2017 - 财政年份:2017
- 资助金额:
$ 2.4万 - 项目类别:
Engage Grants Program
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
新型手性NAD(P)H Models合成及生化模拟
- 批准号:20472090
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Joint longitudinal and survival models for intensive longitudinal data from mobile health studies of smoking cessation
来自戒烟移动健康研究的密集纵向数据的联合纵向和生存模型
- 批准号:
10677935 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Dynamic Control of Task Demands in Mobile Contexts using Sensor Data and Adaptive User Models
使用传感器数据和自适应用户模型动态控制移动环境中的任务需求
- 批准号:
RGPIN-2018-06591 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: IMR: MM-1A: MapQ: Mapping Quality of Coverage in Mobile Broadband Networks using Latent Gaussian Process Models
合作研究:IMR:MM-1A:MapQ:使用潜在高斯过程模型映射移动宽带网络的覆盖质量
- 批准号:
2220387 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
Collaborative Research: IMR: MM-1A: MapQ: Mapping Quality of Coverage in Mobile Broadband Networks using Latent Gaussian Process Models
合作研究:IMR:MM-1A:MapQ:使用潜在高斯过程模型映射移动宽带网络的覆盖质量
- 批准号:
2220388 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
Dynamic Control of Task Demands in Mobile Contexts using Sensor Data and Adaptive User Models
使用传感器数据和自适应用户模型动态控制移动环境中的任务需求
- 批准号:
RGPIN-2018-06591 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Mobile air quality sensing and prediction with Machine Learning models
使用机器学习模型进行移动空气质量传感和预测
- 批准号:
561973-2021 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
University Undergraduate Student Research Awards
Creating and Using Models for Mobile and Rich Internet Applications
为移动和富互联网应用程序创建和使用模型
- 批准号:
RGPIN-2015-05744 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Mathematical Models of Mobile Computing Devices and Application Software
移动计算设备和应用软件的数学模型
- 批准号:
RGPIN-2017-04238 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Creating and Using Models for Mobile and Rich Internet Applications
为移动和富互联网应用程序创建和使用模型
- 批准号:
RGPIN-2015-05744 - 财政年份:2020
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Dynamic Control of Task Demands in Mobile Contexts using Sensor Data and Adaptive User Models
使用传感器数据和自适应用户模型动态控制移动环境中的任务需求
- 批准号:
RGPIN-2018-06591 - 财政年份:2020
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual