An artificial intelligence based approach to account for the effects of microstructure gradients and residual stresses on fatigue performance of additively manufactured aluminum
一种基于人工智能的方法,用于解释微观结构梯度和残余应力对增材制造铝疲劳性能的影响
基本信息
- 批准号:566664-2021
- 负责人:
- 金额:$ 2.19万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Alliance Grants
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This Alliance project focuses on developing a new numerical framework to couple crystal plasticity-based finite element method (CPFEM) with artificial intelligence (AI) based machine learning (ML) approaches to investigate the effects of microstructural gradients and residual stresses on the fatigue performance of additively manufactured (AM) components. One major concern in AM build parts is the excessive and anisotropic residual stresses that frequently develop in laser powder bed fusion (LPBF) processed components. The mechanical properties such as the fatigue life of these materials are strongly governed by residual stresses that can often be as high as the material's yield strength. Furthermore, these stresses form due to local microstructural effects, such as local differences in grain morphologies, texture, and slip behavior, and are a cause of concern for additively manufactured alloys due to the inherent complex and heterogeneous microstructures. Since CPFEM can incorporate macro and micro-level residual stresses, microstructural attributes (i.e., grain morphologies, microstructural gradient, texture), and can model the accumulation of the induced plastic deformation at the slip system level, it is an ideal candidate for the present microstructure sensitive application. However, CPFEM modeling is computationally expensive, and its application to fatigue life predictions further complicates the problem due to the repetitive and time-consuming nature of fatigue loading. This project combines the latest advancements in crystal plasticity and artificial intelligence to enable the investigation of the effects of microstructural gradients and residual stresses on the fatigue performance of additively manufactured aluminum alloys. The new numerical framework will use artificial intelligence algorithms to significantly accelerate CPFEM simulations and thus permit numerical simulations of fatigue that can account for the full complexity of microstructures obtained by additive manufacturing.
该联盟项目的重点是开发一种新的数值框架,将基于晶体塑性的有限元法(CPFEM)与基于人工智能(AI)的机器学习(ML)方法相结合,以研究微结构梯度和残余应力对增材制造(AM)部件疲劳性能的影响。AM构建部件中的一个主要问题是激光粉末床熔融(LPBF)处理的部件中经常产生的过度和各向异性残余应力。这些材料的机械性能(例如疲劳寿命)强烈地受残余应力支配,残余应力通常可以与材料的屈服强度一样高。此外,这些应力由于局部微观结构效应(例如晶粒形态、织构和滑移行为的局部差异)而形成,并且由于固有的复杂和异质微观结构而成为增材制造合金的关注原因。由于CPFEM可以结合宏观和微观水平的残余应力,微观结构属性(即,晶粒形态、微结构梯度、织构),并且可以模拟在滑移系水平上诱导的塑性变形的累积,因此它是目前微结构敏感应用的理想候选者。然而,CPFEM建模是计算昂贵的,其应用程序的疲劳寿命预测进一步复杂化的问题,由于疲劳加载的重复性和耗时的性质。该项目结合了晶体塑性和人工智能的最新进展,以研究微观结构梯度和残余应力对增材制造铝合金疲劳性能的影响。新的数值框架将使用人工智能算法来显着加速CPFEM模拟,从而允许疲劳的数值模拟,可以解释增材制造获得的微观结构的全部复杂性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Inal, Kaan其他文献
A machine learning framework to predict local strain distribution and the evolution of plastic anisotropy & fracture in additively manufactured alloys
- DOI:
10.1016/j.ijplas.2020.102867 - 发表时间:
2021-01-01 - 期刊:
- 影响因子:9.8
- 作者:
Muhammad, Waqas;Brahme, Abhijit P.;Inal, Kaan - 通讯作者:
Inal, Kaan
Application of artificial neural networks in micromechanics for polycrystalline metals
- DOI:
10.1016/j.ijplas.2019.05.001 - 发表时间:
2019-09-01 - 期刊:
- 影响因子:9.8
- 作者:
Ali, Usman;Muhammad, Waqas;Inal, Kaan - 通讯作者:
Inal, Kaan
Development of high crush efficient, extrudable aluminium front rails for vehicle lightweighting
- DOI:
10.1016/j.ijimpeng.2016.04.004 - 发表时间:
2016-09-01 - 期刊:
- 影响因子:5.1
- 作者:
Kohar, Christopher P.;Zhumagulov, Amir;Inal, Kaan - 通讯作者:
Inal, Kaan
A computational mechanics engineering framework for predicting the axial crush response of Aluminum extrusions
- DOI:
10.1016/j.tws.2019.02.007 - 发表时间:
2019-07-01 - 期刊:
- 影响因子:6.4
- 作者:
Kohar, Christopher P.;Brahme, Abhijit;Inal, Kaan - 通讯作者:
Inal, Kaan
A new crystal plasticity constitutive model for simulating precipitation-hardenable aluminum alloys
- DOI:
10.1016/j.ijplas.2020.102759 - 发表时间:
2020-09-01 - 期刊:
- 影响因子:9.8
- 作者:
Li, Y. Larry;Kohar, Christopher P.;Inal, Kaan - 通讯作者:
Inal, Kaan
Inal, Kaan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Inal, Kaan', 18)}}的其他基金
Numerical Modeling of Localized Deformation in Age Hardened Aluminum Alloys and Rare Earth Added Magnesium Alloys at Room and Elevated Temperatures
室温和高温时效硬化铝合金和添加稀土的镁合金局部变形的数值模拟
- 批准号:
RGPIN-2017-04739 - 财政年份:2021
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Micromechanics based Modelling of Formability and Fracture in Dual Phase and Quenched and Partitioned Steels
基于微观力学的双相钢、淬火钢和分割钢的成形性和断裂建模
- 批准号:
558388-2020 - 财政年份:2021
- 资助金额:
$ 2.19万 - 项目类别:
Alliance Grants
Artificial intelligence (AI) based deep learning of defects, surface roughness and their linkage to mechanical performance of additively manufactured (AM) aluminum alloys
基于人工智能 (AI) 的缺陷、表面粗糙度及其与增材制造 (AM) 铝合金机械性能的联系的深度学习
- 批准号:
549214-2019 - 财政年份:2020
- 资助金额:
$ 2.19万 - 项目类别:
Alliance Grants
Micromechanics based Modelling of Formability and Fracture in Dual Phase and Quenched and Partitioned Steels
基于微观力学的双相钢、淬火钢和分割钢的成形性和断裂建模
- 批准号:
558388-2020 - 财政年份:2020
- 资助金额:
$ 2.19万 - 项目类别:
Alliance Grants
NSERC/General Motors of Canada Industrial Research Chair in Integrated Computational Mechanics for Mass Efficient Automotive Structures
NSERC/加拿大通用汽车大规模高效汽车结构集成计算力学工业研究主席
- 批准号:
503184-2016 - 财政年份:2020
- 资助金额:
$ 2.19万 - 项目类别:
Industrial Research Chairs
Numerical Modeling of Localized Deformation in Age Hardened Aluminum Alloys and Rare Earth Added Magnesium Alloys at Room and Elevated Temperatures
室温和高温时效硬化铝合金和添加稀土的镁合金局部变形的数值模拟
- 批准号:
RGPIN-2017-04739 - 财政年份:2020
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Numerical Modeling of Localized Deformation in Age Hardened Aluminum Alloys and Rare Earth Added Magnesium Alloys at Room and Elevated Temperatures
室温和高温时效硬化铝合金和添加稀土的镁合金局部变形的数值模拟
- 批准号:
RGPIN-2017-04739 - 财政年份:2019
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
NSERC/General Motors of Canada Industrial Research Chair in Integrated Computational Mechanics for Mass Efficient Automotive Structures
NSERC/加拿大通用汽车大规模高效汽车结构集成计算力学工业研究主席
- 批准号:
503185-2016 - 财政年份:2019
- 资助金额:
$ 2.19万 - 项目类别:
Industrial Research Chairs
Numerical Modeling of Localized Deformation in Age Hardened Aluminum Alloys and Rare Earth Added Magnesium Alloys at Room and Elevated Temperatures
室温和高温时效硬化铝合金和添加稀土的镁合金局部变形的数值模拟
- 批准号:
RGPIN-2017-04739 - 财政年份:2018
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Virtual Characterization of the mechanical properties of aluminum alloys at elevated temperatures
铝合金高温机械性能的虚拟表征
- 批准号:
528296-2018 - 财政年份:2018
- 资助金额:
$ 2.19万 - 项目类别:
Engage Grants Program
相似国自然基金
跨文化团队中团队协调机制和团队效能的研究:文化智力的视角
- 批准号:71072055
- 批准年份:2010
- 资助金额:28.0 万元
- 项目类别:面上项目
基于混沌动力学与复杂网络的群智能优化研究
- 批准号:60673098
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:面上项目
智力超常儿童的基因分型的初步研究
- 批准号:30670716
- 批准年份:2006
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
I-Corps: Centralized, Cloud-Based, Artificial Intelligence (AI) Video Analysis for Enhanced Intubation Documentation and Continuous Quality Control
I-Corps:基于云的集中式人工智能 (AI) 视频分析,用于增强插管记录和持续质量控制
- 批准号:
2405662 - 财政年份:2024
- 资助金额:
$ 2.19万 - 项目类别:
Standard Grant
SBIR Phase I: A web portal for artificial intelligence (AI)-based comprehensive discovery of repositioning drugs
SBIR 第一阶段:基于人工智能 (AI) 的重新定位药物综合发现门户网站
- 批准号:
2334510 - 财政年份:2024
- 资助金额:
$ 2.19万 - 项目类别:
Standard Grant
SBIR Phase I: VoxCare: Artificial Intelligence-based Monitoring for Substance Use Indicators in Youth
SBIR 第一阶段:VoxCare:基于人工智能的青少年药物使用指标监测
- 批准号:
2335605 - 财政年份:2024
- 资助金额:
$ 2.19万 - 项目类别:
Standard Grant
AI4HOPE: ARTIFICIAL INTELLIGENCE BASED HEALTH, OPTIMISM, PURPOSE, AND ENDURANCE IN PALLIATIVE CARE FOR DEMENTIA
AI4HOPE:基于人工智能的痴呆症姑息治疗中的健康、乐观、目标和耐力
- 批准号:
10103129 - 财政年份:2024
- 资助金额:
$ 2.19万 - 项目类别:
EU-Funded
Utilising alternative data to develop a machine learning-based artificial intelligence platform for real-time KPI tracking of UK companies for fundamental investors
利用另类数据开发基于机器学习的人工智能平台,为基本面投资者实时跟踪英国公司的 KPI
- 批准号:
10057969 - 财政年份:2023
- 资助金额:
$ 2.19万 - 项目类别:
Collaborative R&D
NIMBLE - an artificial intelligence-based early warning system for bladder cancer
NIMBLE——基于人工智能的膀胱癌早期预警系统
- 批准号:
486937 - 财政年份:2023
- 资助金额:
$ 2.19万 - 项目类别:
Miscellaneous Programs
Automating data acquisition and data processing pipeline via artificial intelligence and machine learning approaches to allow at-home use of a novel breast cancer screening method employing bra-based elastography imaging.
通过人工智能和机器学习方法自动化数据采集和数据处理流程,以便在家使用基于胸罩的弹性成像成像的新型乳腺癌筛查方法。
- 批准号:
486956 - 财政年份:2023
- 资助金额:
$ 2.19万 - 项目类别:
Operating Grants
I-Corps: Privacy-Responsive Artificial Intelligence-Based Solution for Smart Video Surveillance
I-Corps:基于隐私敏感的人工智能的智能视频监控解决方案
- 批准号:
2323757 - 财政年份:2023
- 资助金额:
$ 2.19万 - 项目类别:
Standard Grant
ClinEX - Clinical Evidence Extraction, Representation, and Appraisal
ClinEX - 临床证据提取、表示和评估
- 批准号:
10754029 - 财政年份:2023
- 资助金额:
$ 2.19万 - 项目类别:
Cloud-Based Machine Learning and Biomarker Visual Analytics for Salivary Proteomics
基于云的机器学习和唾液蛋白质组生物标志物可视化分析
- 批准号:
10827649 - 财政年份:2023
- 资助金额:
$ 2.19万 - 项目类别: