ClinEX - Clinical Evidence Extraction, Representation, and Appraisal
ClinEX - 临床证据提取、表示和评估
基本信息
- 批准号:10754029
- 负责人:
- 金额:$ 70.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-20 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:AdoptionArtificial IntelligenceBenchmarkingCOVID-19 pandemicCOVID-19 patientClinicalClinical ResearchClinical TrialsCollaborationsDataData SetDatabasesDetectionEligibility DeterminationEngineeringEthicsEvaluationEvidence Based MedicineExpert SystemsFAIR principlesFaceGenerationsGoalsGrainHealthHealthcareHumanIndividualInformaticsInformation RetrievalIntelligenceInterventionKnowledgeLinkLiteratureMeasuresMechanical ventilationMeta-AnalysisMetadataMethodsMisinformationModelingNatural Language ProcessingNatural Language Processing pipelineOutcomePatientsPeer ReviewPersonsPolicy MakerPopulationProbabilityPubMedPublic HealthPublicationsPublishingQualifyingRandomized, Controlled TrialsRegistriesReportingResearchResearch DesignResearch PersonnelResourcesRetrievalSARS-CoV-2 infectionSample SizeScienceSourceSymbiosisSystemTechnologyTestingTextTrustUpdateWorkaugmented intelligenceclinical trial protocolclinically relevantcognitive taskcohortdata repositorydata reusedata sharingdata translatordeep learningdesigndrug repurposingevidence baseexperiencefitnessgraph knowledge basehuman studyimprovedinteroperabilityknowledge baseknowledge graphmortality risknovelsevere COVID-19student mentoringstudy characteristicssystematic reviewtask analysisuser centered designwasting
项目摘要
SUMMARY
Evidence-based medicine faces increasingly mounting challenges. With the explosively growing scientific
literature, it will be harder than ever to identify the best evidence available, especially given the large volume of
non-traditional and emerging sources of evidence: e.g., evidence derived from trial registries and data
repositories; observational datasets; publications without peer review; and scientific blogging. Individual studies
using conventional methods for evidence generation, especially randomized controlled trials, may be significantly
flawed in their planning, conduct, analysis, or reporting, resulting in ethical violations, wasted scientific resources,
and dissemination of misinformation with subsequent health harm. Furthermore, a new randomized controlled
trial should be initiated or interpreted in the context of the existing evidence. However, clinical evidence
extraction, appraisal, and aggregation remain laborious human tasks given its free-text format. To support
evidence-based research so that new research hypothesis selection and testing can be well-grounded on the
existing scientific literature and existing evidence can be easily accessible and computable to researchers,
patients, or clinicians, we will develop novel, scalable, and generalizable methods for clinical evidence extraction
and appraisal so that we can help the public identify reliable evidence easily. We will contribute computable
evidence representations and accompanying natural language processing pipelines, achieving symbiosis
between the two to support core tasks for evidence-based medicine, such as faceted evidence retrieval (e.g.,
“retrieve all the randomized controlled trials publications about the efficacy of HCQ on severe COVID-19 patients,
with each study having a sample size over 200”), extraction and representation of clinical findings (e.g., “HCQ
for people infected with COVID-19 has little or no effect on the risk of death, and probably no effect on
progression to mechanical ventilation”), and evidence quality ranking and biases detection.
Therefore, we propose four specific aims:
Aim 1. — Represent and extract Population, Intervention, Comparison, and Outcome (PICO) information.
Aim 2. — Represent and extract clinical findings and their metadata relevant for evidence quality ranking
and study biases detection.
Aim 3. — Develop and validate an extensible living clinical evidence knowledge graph based on the FAIR
principles.
Aim 4. — Develop and validate an Augmented Intelligence (AI) system for evidence appraisal.
INNOVATION There is no scalable and generalizable informatics solution for literature-based, fine-grained
clinical evidence extraction and representation, evidence quality ranking, evidence biases detection, and user-
augmented clinical evidence aggregation and appraisal. ClinEX will be the first solution to achieve these goals.
摘要
循证医学面临着越来越大的挑战。随着爆炸性增长的科学
文献,它将比以往任何时候都更难确定可用的最佳证据,特别是考虑到
非传统和新兴证据来源:例如,来自审判登记处和数据的证据
存储库;观测数据集;未经同行审查的出版物;以及科学博客。个别研究
使用常规方法生成证据,特别是随机对照试验,可能会显著
在计划、行为、分析或报告方面存在缺陷,导致违反道德规范,浪费科学资源,
以及传播错误信息,从而损害健康。此外,一种新的随机对照
审判应在现有证据的背景下启动或解释。然而,临床证据表明
鉴于其自由文本格式,提取、评估和聚合仍然是繁重的人工任务。支持
以证据为基础的研究,以便新研究假设的选择和检验可以基于
现有的科学文献和现有的证据对研究人员来说很容易获得和计算,
患者或临床医生,我们将开发新的、可扩展的和可推广的临床证据提取方法
和鉴定,这样我们就可以帮助公众轻松识别可靠的证据。我们将贡献可计算的
证据表示和伴随的自然语言处理流水线,实现共生
以支持基于证据的医学的核心任务,例如分面证据检索(例如,
“检索所有关于氢氯喹酮对重症新冠肺炎患者疗效的随机对照试验出版物,
每项研究的样本量超过200“),临床发现的提取和表示(例如
对于感染新冠肺炎的人来说,对死亡风险几乎没有影响,很可能对
进展到机械通风“),证据质量排名和偏差检测。
因此,我们提出四个具体目标:
目标1-表示和提取人口、干预、比较和结果(PICO)信息。
目标2-表示和提取与证据质量排名相关的临床研究结果及其元数据
和学习偏差检测。
目标3.开发并验证基于FAIL的可扩展活的临床证据知识图谱
原则。
目标4-开发并验证用于证据鉴定的增强智能(AI)系统。
创新对于基于文献的细粒度信息学解决方案,没有可扩展和可推广的解决方案
临床证据提取和表示、证据质量排名、证据偏差检测和用户-
加强了临床证据的收集和评估。ClinEX将是实现这些目标的第一个解决方案。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yong Chen其他文献
Yong Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yong Chen', 18)}}的其他基金
Surrogate Augmented Deep Predictive Learning for Retinopathy of Prematurity
早产儿视网膜病变的替代增强深度预测学习
- 批准号:
10740289 - 财政年份:2023
- 资助金额:
$ 70.88万 - 项目类别:
Development of Magnetic Resonance Fingerprinting (MRF) to Assess Response to Neoadjuvant Chemotherapy in Breast Cancer
开发磁共振指纹图谱 (MRF) 来评估乳腺癌新辅助化疗的反应
- 批准号:
10713097 - 财政年份:2023
- 资助金额:
$ 70.88万 - 项目类别:
Development of Magnetic Resonance Fingerprinting in Kidney for Evaluation of Renal Cell Carcinoma
肾脏磁共振指纹图谱用于肾细胞癌评估的发展
- 批准号:
10522570 - 财政年份:2022
- 资助金额:
$ 70.88万 - 项目类别:
Development of Magnetic Resonance Fingerprinting in Kidney for Evaluation of Renal Cell Carcinoma
肾脏磁共振指纹图谱用于肾细胞癌评估的发展
- 批准号:
10707150 - 财政年份:2022
- 资助金额:
$ 70.88万 - 项目类别:
PheBC: bias correction methods for EHR derived phenotype
PheBC:EHR 衍生表型的偏差校正方法
- 批准号:
10839649 - 财政年份:2021
- 资助金额:
$ 70.88万 - 项目类别:
PheBC: bias correction methods for EHR derived phenotype
PheBC:EHR 衍生表型的偏差校正方法
- 批准号:
10471166 - 财政年份:2021
- 资助金额:
$ 70.88万 - 项目类别:
CICADA: clinical informatics and computational approaches for drug-repositioning of AD/ADRD
CICADA:AD/ADRD 药物重新定位的临床信息学和计算方法
- 批准号:
10476677 - 财政年份:2021
- 资助金额:
$ 70.88万 - 项目类别:
TRiPOD: Toward Reusable Phenotypes in Observational Data for AD/ADRD - managing definitions and correcting bias
TRiPOD:在 AD/ADRD 观察数据中实现可重复使用的表型 - 管理定义和纠正偏差
- 批准号:
10642888 - 财政年份:2021
- 资助金额:
$ 70.88万 - 项目类别:
TRiPOD: Toward Reusable Phenotypes in Observational Data for AD/ADRD - managing definitions and correcting bias
TRiPOD:在 AD/ADRD 观察数据中实现可重复使用的表型 - 管理定义和纠正偏差
- 批准号:
10279554 - 财政年份:2021
- 资助金额:
$ 70.88万 - 项目类别:
CICADA: clinical informatics and computational approaches for drug-repositioning of AD/ADRD
CICADA:AD/ADRD 药物重新定位的临床信息学和计算方法
- 批准号:
10490346 - 财政年份:2021
- 资助金额:
$ 70.88万 - 项目类别:
相似海外基金
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
- 批准号:
10093095 - 财政年份:2024
- 资助金额:
$ 70.88万 - 项目类别:
Collaborative R&D
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
- 批准号:
10106704 - 财政年份:2024
- 资助金额:
$ 70.88万 - 项目类别:
EU-Funded
Artificial intelligence in education: Democratising policy
教育中的人工智能:政策民主化
- 批准号:
DP240100602 - 财政年份:2024
- 资助金额:
$ 70.88万 - 项目类别:
Discovery Projects
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
- 批准号:
MR/Y009657/1 - 财政年份:2024
- 资助金额:
$ 70.88万 - 项目类别:
Fellowship
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:CyberAI:利用人工智能实现智能系统的网络安全解决方案
- 批准号:
2349104 - 财政年份:2024
- 资助金额:
$ 70.88万 - 项目类别:
Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
- 批准号:
2342384 - 财政年份:2024
- 资助金额:
$ 70.88万 - 项目类别:
Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343607 - 财政年份:2024
- 资助金额:
$ 70.88万 - 项目类别:
Standard Grant
I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
- 批准号:
2409130 - 财政年份:2024
- 资助金额:
$ 70.88万 - 项目类别:
Standard Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
- 批准号:
2414141 - 财政年份:2024
- 资助金额:
$ 70.88万 - 项目类别:
Standard Grant
Reassessing the Appropriateness of currently-available Data-set Protection Levers in the era of Artificial Intelligence
重新评估人工智能时代现有数据集保护手段的适用性
- 批准号:
23K22068 - 财政年份:2024
- 资助金额:
$ 70.88万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




