ClinEX - Clinical Evidence Extraction, Representation, and Appraisal

ClinEX - 临床证据提取、表示和评估

基本信息

  • 批准号:
    10754029
  • 负责人:
  • 金额:
    $ 70.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-20 至 2028-07-31
  • 项目状态:
    未结题

项目摘要

SUMMARY Evidence-based medicine faces increasingly mounting challenges. With the explosively growing scientific literature, it will be harder than ever to identify the best evidence available, especially given the large volume of non-traditional and emerging sources of evidence: e.g., evidence derived from trial registries and data repositories; observational datasets; publications without peer review; and scientific blogging. Individual studies using conventional methods for evidence generation, especially randomized controlled trials, may be significantly flawed in their planning, conduct, analysis, or reporting, resulting in ethical violations, wasted scientific resources, and dissemination of misinformation with subsequent health harm. Furthermore, a new randomized controlled trial should be initiated or interpreted in the context of the existing evidence. However, clinical evidence extraction, appraisal, and aggregation remain laborious human tasks given its free-text format. To support evidence-based research so that new research hypothesis selection and testing can be well-grounded on the existing scientific literature and existing evidence can be easily accessible and computable to researchers, patients, or clinicians, we will develop novel, scalable, and generalizable methods for clinical evidence extraction and appraisal so that we can help the public identify reliable evidence easily. We will contribute computable evidence representations and accompanying natural language processing pipelines, achieving symbiosis between the two to support core tasks for evidence-based medicine, such as faceted evidence retrieval (e.g., “retrieve all the randomized controlled trials publications about the efficacy of HCQ on severe COVID-19 patients, with each study having a sample size over 200”), extraction and representation of clinical findings (e.g., “HCQ for people infected with COVID-19 has little or no effect on the risk of death, and probably no effect on progression to mechanical ventilation”), and evidence quality ranking and biases detection. Therefore, we propose four specific aims: Aim 1. — Represent and extract Population, Intervention, Comparison, and Outcome (PICO) information. Aim 2. — Represent and extract clinical findings and their metadata relevant for evidence quality ranking and study biases detection. Aim 3. — Develop and validate an extensible living clinical evidence knowledge graph based on the FAIR principles. Aim 4. — Develop and validate an Augmented Intelligence (AI) system for evidence appraisal. INNOVATION There is no scalable and generalizable informatics solution for literature-based, fine-grained clinical evidence extraction and representation, evidence quality ranking, evidence biases detection, and user- augmented clinical evidence aggregation and appraisal. ClinEX will be the first solution to achieve these goals.
总结 循证医学面临越来越多的挑战。随着爆炸性增长的科学 如果没有大量的文献,识别现有的最佳证据将比以往任何时候都更难,特别是考虑到大量的 非传统和新出现的证据来源:例如,来自试验登记和数据的证据 数据库;观测数据集;未经同行审查的出版物;以及科学博客。个体研究 使用传统的证据生成方法,特别是随机对照试验, 在计划、实施、分析或报告中存在缺陷,导致违反伦理,浪费科学资源, 传播错误信息,造成健康损害。此外,新的随机对照 审判应根据现有证据启动或解释。然而,临床证据表明, 鉴于其自由文本格式,提取、评估和聚合仍然是费力的人工任务。支持 以证据为基础的研究,使新的研究假设的选择和测试可以很好地建立在 现有的科学文献和现有的证据可以很容易地为研究人员所获取和计算, 患者或临床医生,我们将开发新的,可扩展的和可推广的临床证据提取方法 和鉴定,让市民更容易找到可靠的证据。我们将贡献可计算 证据表示和伴随的自然语言处理管道,实现共生 支持循证医学的核心任务,如分面证据检索(例如, “检索所有关于HCQ对严重COVID-19患者有效性的随机对照试验出版物, 每个研究具有超过200”的样本量),临床发现的提取和表示(例如,“HCQ 对于感染COVID-19的人来说,对死亡风险几乎没有影响, 进展到机械通气”),以及证据质量排名和偏差检测。 因此,我们提出四个具体目标: 目标1。- 代表和提取人群、干预、比较和结局(皮科)信息。 目标二。- 表示和提取临床结果及其与证据质量评级相关的元数据 and study研究biases偏见detection检测. 目标3. - 基于FAIR开发和验证可扩展的活临床证据知识图 原则 目标4。- 开发并验证用于证据评估的增强智能(AI)系统。 创新对于基于文献的细粒度信息处理, 临床证据提取和表示,证据质量排名,证据偏见检测,以及用户- 加强临床证据的收集和评估。ClinEX将是实现这些目标的第一个解决方案。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yong Chen其他文献

Yong Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yong Chen', 18)}}的其他基金

Surrogate Augmented Deep Predictive Learning for Retinopathy of Prematurity
早产儿视网膜病变的替代增强深度预测学习
  • 批准号:
    10740289
  • 财政年份:
    2023
  • 资助金额:
    $ 70.88万
  • 项目类别:
Development of Magnetic Resonance Fingerprinting (MRF) to Assess Response to Neoadjuvant Chemotherapy in Breast Cancer
开发磁共振指纹图谱 (MRF) 来评估乳腺癌新辅助化疗的反应
  • 批准号:
    10713097
  • 财政年份:
    2023
  • 资助金额:
    $ 70.88万
  • 项目类别:
Development of Magnetic Resonance Fingerprinting in Kidney for Evaluation of Renal Cell Carcinoma
肾脏磁共振指纹图谱用于肾细胞癌评估的发展
  • 批准号:
    10522570
  • 财政年份:
    2022
  • 资助金额:
    $ 70.88万
  • 项目类别:
Development of Magnetic Resonance Fingerprinting in Kidney for Evaluation of Renal Cell Carcinoma
肾脏磁共振指纹图谱用于肾细胞癌评估的发展
  • 批准号:
    10707150
  • 财政年份:
    2022
  • 资助金额:
    $ 70.88万
  • 项目类别:
CICADA: clinical informatics and computational approaches for drug-repositioning of AD/ADRD
CICADA:AD/ADRD 药物重新定位的临床信息学和计算方法
  • 批准号:
    10476677
  • 财政年份:
    2021
  • 资助金额:
    $ 70.88万
  • 项目类别:
PheBC: bias correction methods for EHR derived phenotype
PheBC:EHR 衍生表型的偏差校正方法
  • 批准号:
    10471166
  • 财政年份:
    2021
  • 资助金额:
    $ 70.88万
  • 项目类别:
PheBC: bias correction methods for EHR derived phenotype
PheBC:EHR 衍生表型的偏差校正方法
  • 批准号:
    10839649
  • 财政年份:
    2021
  • 资助金额:
    $ 70.88万
  • 项目类别:
TRiPOD: Toward Reusable Phenotypes in Observational Data for AD/ADRD - managing definitions and correcting bias
TRiPOD:在 AD/ADRD 观察数据中实现可重复使用的表型 - 管理定义和纠正偏差
  • 批准号:
    10642888
  • 财政年份:
    2021
  • 资助金额:
    $ 70.88万
  • 项目类别:
TRiPOD: Toward Reusable Phenotypes in Observational Data for AD/ADRD - managing definitions and correcting bias
TRiPOD:在 AD/ADRD 观察数据中实现可重复使用的表型 - 管理定义和纠正偏差
  • 批准号:
    10279554
  • 财政年份:
    2021
  • 资助金额:
    $ 70.88万
  • 项目类别:
CICADA: clinical informatics and computational approaches for drug-repositioning of AD/ADRD
CICADA:AD/ADRD 药物重新定位的临床信息学和计算方法
  • 批准号:
    10490346
  • 财政年份:
    2021
  • 资助金额:
    $ 70.88万
  • 项目类别:

相似海外基金

I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
  • 批准号:
    2409130
  • 财政年份:
    2024
  • 资助金额:
    $ 70.88万
  • 项目类别:
    Standard Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
  • 批准号:
    2414141
  • 财政年份:
    2024
  • 资助金额:
    $ 70.88万
  • 项目类别:
    Standard Grant
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:Cyber​​AI:利用人工智能实现智能系统的网络安全解决方案
  • 批准号:
    2349104
  • 财政年份:
    2024
  • 资助金额:
    $ 70.88万
  • 项目类别:
    Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
  • 批准号:
    2342384
  • 财政年份:
    2024
  • 资助金额:
    $ 70.88万
  • 项目类别:
    Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
  • 批准号:
    2343607
  • 财政年份:
    2024
  • 资助金额:
    $ 70.88万
  • 项目类别:
    Standard Grant
Artificial intelligence in education: Democratising policy
教育中的人工智能:政策民主化
  • 批准号:
    DP240100602
  • 财政年份:
    2024
  • 资助金额:
    $ 70.88万
  • 项目类别:
    Discovery Projects
Reassessing the Appropriateness of currently-available Data-set Protection Levers in the era of Artificial Intelligence
重新评估人工智能时代现有数据集保护手段的适用性
  • 批准号:
    23K22068
  • 财政年份:
    2024
  • 资助金额:
    $ 70.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
  • 批准号:
    10093095
  • 财政年份:
    2024
  • 资助金额:
    $ 70.88万
  • 项目类别:
    Collaborative R&D
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
  • 批准号:
    10106704
  • 财政年份:
    2024
  • 资助金额:
    $ 70.88万
  • 项目类别:
    EU-Funded
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
  • 批准号:
    MR/Y009657/1
  • 财政年份:
    2024
  • 资助金额:
    $ 70.88万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了