Developing a Stochastic Multicloud Convection Closure
开发随机多云对流闭合
基本信息
- 批准号:565340-2021
- 负责人:
- 金额:$ 1.27万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Alexander Graham Bell Canada Graduate Scholarships - Master's
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
No summary - Aucun sommaire
没有总结- Aucun sommaire
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leclerc, Etienne其他文献
Leclerc, Etienne的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leclerc, Etienne', 18)}}的其他基金
Stochastic Relaxation for Quasi-Equilibrium Theory of Organized Tropical Convection
有组织热带对流准平衡理论的随机弛豫
- 批准号:
538942-2019 - 财政年份:2019
- 资助金额:
$ 1.27万 - 项目类别:
University Undergraduate Student Research Awards
Dynamical closure for cumulus parametrization with a stochastic multicloud model
使用随机多云模型进行积云参数化的动态闭合
- 批准号:
525681-2018 - 财政年份:2018
- 资助金额:
$ 1.27万 - 项目类别:
University Undergraduate Student Research Awards
相似国自然基金
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于梯度增强Stochastic Co-Kriging的CFD非嵌入式不确定性量化方法研究
- 批准号:11902320
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Large Graph Limits of Stochastic Processes on Random Graphs
随机图上随机过程的大图极限
- 批准号:
EP/Y027795/1 - 财政年份:2024
- 资助金额:
$ 1.27万 - 项目类别:
Research Grant
Bi-parameter paracontrolled approach to singular stochastic wave equations
奇异随机波动方程的双参数参数控制方法
- 批准号:
EP/Y033507/1 - 财政年份:2024
- 资助金额:
$ 1.27万 - 项目类别:
Research Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
- 批准号:
2333881 - 财政年份:2024
- 资助金额:
$ 1.27万 - 项目类别:
Standard Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
- 批准号:
2333882 - 财政年份:2024
- 资助金额:
$ 1.27万 - 项目类别:
Standard Grant
Stochastic processes in random environments with inhomogeneous scaling limits
具有不均匀缩放限制的随机环境中的随机过程
- 批准号:
24K06758 - 财政年份:2024
- 资助金额:
$ 1.27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: SG: Effects of altered pollination environments on plant population dynamics in a stochastic world
合作研究:SG:随机世界中授粉环境改变对植物种群动态的影响
- 批准号:
2337427 - 财政年份:2024
- 资助金额:
$ 1.27万 - 项目类别:
Standard Grant
Cell factory design: unlocking the Multi-Objective Stochastic meTabolic game (MOST)
细胞工厂设计:解锁多目标随机代谢游戏(MOST)
- 批准号:
EP/X041239/1 - 财政年份:2024
- 资助金额:
$ 1.27万 - 项目类别:
Research Grant
Structure-Preserving Integrators for Lévy-Driven Stochastic Systems
Levy 驱动随机系统的结构保持积分器
- 批准号:
EP/Y033248/1 - 财政年份:2024
- 资助金额:
$ 1.27万 - 项目类别:
Research Grant
CAREER: Learning Theory for Large-scale Stochastic Games
职业:大规模随机博弈的学习理论
- 批准号:
2339240 - 财政年份:2024
- 资助金额:
$ 1.27万 - 项目类别:
Continuing Grant
CAREER: Marine Debris at Coastlines: predicting sources from drift, dispersion, and beaching via experiments and multiscale stochastic models
职业:海岸线的海洋碎片:通过实验和多尺度随机模型预测漂移、分散和搁浅的来源
- 批准号:
2338221 - 财政年份:2024
- 资助金额:
$ 1.27万 - 项目类别:
Continuing Grant














{{item.name}}会员




