Advanced Membrane-Free Electrochemical Energy Storage Devices (Phase 1)

先进无膜电化学储能器件(一期)

基本信息

  • 批准号:
    566840-2021
  • 负责人:
  • 金额:
    $ 9.11万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Idea to Innovation
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Energy storage is required for making renewable electricity generation, such as wind and solar, dispatchable. A variety of energy storage technologies are technically mature and commercially available. Among these, redox flow batteries (RFBs) operating with vanadium electrochemistry (vanadium redox flow battery, VRFB) offer a unique advantage of independently sizing power and energy density, and are therefore a promising candidate for grid and off-grid stationary energy storage applications. However, the current generation of RFBs suffer from operational inefficiency, primarily due the use of Nafion membrane that separates the anolyte and catholyte. Yet it is necessary to allow the movement of protons across the membrane to support the fundamentals of electrochemistry. The membrane is incapable of preventing vanadium ion crossover through it resulting in electrolyte dilution and efficiency loss, and limiting the battery operating temperature range, generally above 40°C. Additionally, the Nafion membrane is costly and approximately represents 40% of the cell stack cost. We are proposing a radically innovative RFB/VRFB design in which the membrane as well as the associated technical issues are eliminated. In our design, the membrane is replaced with auxiliary electrodes (AE's) made of metal oxides (SnO/SnO2), that change their oxidation states (Sn2+/Sn4+) during charging/discharging, balance the charges in the anolyte and catholyte, and provide the necessary electrochemistry for the electrochemical energy storage. AEs eliminate ionic movement between electrolyte compartments and completely prevent electrolyte crossover without negatively impacting cell performance. This novel design also provides an opportunity to use high-energy-dense electrolytes in the RFB system with flexible operating conditions. Five HQPs will be trained in the RFB technology during this project. These HQPs will be skilled in technical and business aspects of energy storage and suitable for high-demand energy storage positions in industry and academia in the near future.
为了使风能和太阳能等可再生能源发电可调度,需要储能。各种储能技术在技术上已经成熟,并可在商业上获得。其中,利用钒电化学工作的氧化还原液流电池(RFB)(钒氧化还原液流电池,VRFB)具有独立调整功率和能量密度的独特优势,因此是电网和离网固定能源存储应用的有前途的候选者。然而,当前一代的RFB遭受操作效率低的问题,这主要是由于使用了分隔阳极电解液和阴极电解液的Nafion膜。然而,为了支持电化学的基本原理,允许质子穿过膜的运动是必要的。该膜不能防止钒离子穿过它,导致电解质稀释和效率损失,并限制电池工作温度范围,通常高于40°C。此外,Nafion膜是昂贵的,约占电池堆成本的40%。我们提出了一种彻底创新的RFB/VRFB设计,其中消除了膜以及相关的技术问题。在我们的设计中,用由金属氧化物(SnO/SnO 2)制成的辅助电极(AE)代替膜,所述辅助电极在充电/放电期间改变它们的氧化态(Sn 2 +/Sn 4+),平衡阳极电解液和阴极电解液中的电荷,并为电化学能量存储提供必要的电化学。AE消除了电解质隔室之间的离子运动,并完全防止电解质交叉,而不会对电池性能产生负面影响。这种新颖的设计还提供了在具有灵活操作条件的RFB系统中使用高能量密度电解质的机会。在本项目期间,将对五名HQP进行RFB技术培训。这些HQP将熟练掌握储能的技术和业务方面,并适合在不久的将来在工业和学术界的高需求储能职位。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thangadurai, Venkataraman其他文献

Insights into B-Site Ordering in Double Perovskite-Type Ba3Ca1+xNb2-xO9-δ (0 ≤ x ≤ 0.45): Combined Synchrotron and Neutron Diffraction and Electrical Transport Analyses
  • DOI:
    10.1021/acs.inorgchem.7b02984
  • 发表时间:
    2018-03-05
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Singh, Kalpana;Kan, Wang Hay;Thangadurai, Venkataraman
  • 通讯作者:
    Thangadurai, Venkataraman
Present understanding of the stability of Li-stuffed garnets with moisture, carbon dioxide, and metallic lithium
  • DOI:
    10.1016/j.jpowsour.2018.04.016
  • 发表时间:
    2018-06-30
  • 期刊:
  • 影响因子:
    9.2
  • 作者:
    Hofstetter, Kyle;Samson, Alfred Junio;Thangadurai, Venkataraman
  • 通讯作者:
    Thangadurai, Venkataraman
Electrolyte selection for supercapacitive devices: a critical review.
  • DOI:
    10.1039/c9na00374f
  • 发表时间:
    2019-10-09
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Pal, Bhupender;Yang, Shengyuan;Ramesh, S.;Thangadurai, Venkataraman;Jose, Rajan
  • 通讯作者:
    Jose, Rajan
Fast lithium ion conduction in garnet-type Li7La3Zr2O12
  • DOI:
    10.1002/anie.200701144
  • 发表时间:
    2007-01-01
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Murugan, Ramaswamy;Thangadurai, Venkataraman;Weppner, Werner
  • 通讯作者:
    Weppner, Werner
Studies on Chemical Stability and Electrical Properties of Proton Conducting Perovskite-Like Doped BaCeO3
  • DOI:
    10.1149/1.3464774
  • 发表时间:
    2010-01-01
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Dauter, Jasmine;Maffei, Nicola;Thangadurai, Venkataraman
  • 通讯作者:
    Thangadurai, Venkataraman

Thangadurai, Venkataraman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thangadurai, Venkataraman', 18)}}的其他基金

Solid State Chemistry for Advanced Lithium Batteries and Solid Oxide Fuel Cells
先进锂电池和固体氧化物燃料电池的固态化学
  • 批准号:
    RGPIN-2021-02493
  • 财政年份:
    2022
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Discovery Grants Program - Individual
Solid State Chemistry for Advanced Lithium Batteries and Solid Oxide Fuel Cells
先进锂电池和固体氧化物燃料电池的固态化学
  • 批准号:
    RGPIN-2021-02493
  • 财政年份:
    2021
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Discovery Grants Program - Individual
Solid-state Electrolyte Membranes for Next Generation Sodium Batteries
用于下一代钠电池的固态电解质膜
  • 批准号:
    543711-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Collaborative Research and Development Grants
Solid-state Electrolyte Membranes for Next Generation Sodium Batteries
用于下一代钠电池的固态电解质膜
  • 批准号:
    543711-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Collaborative Research and Development Grants
Solid State Chemistry for Next Generation Energy Storage and Conversion Technologies
用于下一代能量存储和转换技术的固态化学
  • 批准号:
    RGPIN-2016-03853
  • 财政年份:
    2020
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Discovery Grants Program - Individual
Improving the battery fabrication and testing facility at the University of Calgary
改善卡尔加里大学的电池制造和测试设施
  • 批准号:
    RTI-2021-00031
  • 财政年份:
    2020
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Research Tools and Instruments
Solid-state Electrolyte Membranes for Next Generation Sodium Batteries
用于下一代钠电池的固态电解质膜
  • 批准号:
    543711-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Collaborative Research and Development Grants
Solid State Chemistry for Next Generation Energy Storage and Conversion Technologies
用于下一代能量存储和转换技术的固态化学
  • 批准号:
    RGPIN-2016-03853
  • 财政年份:
    2019
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Discovery Grants Program - Individual
Understanding the Chemistry of High-Temperature Li-CFx Primary Battery**
了解高温 Li-CFx 原电池的化学性质**
  • 批准号:
    536703-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Engage Grants Program
Solid State Chemistry for Next Generation Energy Storage and Conversion Technologies
用于下一代能量存储和转换技术的固态化学
  • 批准号:
    RGPIN-2016-03853
  • 财政年份:
    2018
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Utilizing Broad Solar Light with Nano-Membrane Devices for Chemical-free Water Treatment
利用广泛的太阳光和纳米膜装置进行无化学水处理
  • 批准号:
    DDG-2022-00025
  • 财政年份:
    2022
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Discovery Development Grant
A Wireless, Multimodal Neural Probe for Simultaneous Membrane-Free Neurochemical Sampling and Neuropharmacology
用于同步无膜神经化学采样和神经药理学的无线多模态神经探针
  • 批准号:
    10521971
  • 财政年份:
    2022
  • 资助金额:
    $ 9.11万
  • 项目类别:
NSF-BSF: Electrified Membrane System for Chemical-Free Nitrogen Recovery from Nitrate Contaminated Water
NSF-BSF:用于从硝酸盐污染水中回收无化学物质氮的带电膜系统
  • 批准号:
    2215387
  • 财政年份:
    2022
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Standard Grant
A Wireless, Multimodal Neural Probe for Simultaneous Membrane-Free Neurochemical Sampling and Neuropharmacology
用于同步无膜神经化学采样和神经药理学的无线多模态神经探针
  • 批准号:
    10646362
  • 财政年份:
    2022
  • 资助金额:
    $ 9.11万
  • 项目类别:
Development of Contactless and Label-free Measurement of Membrane Potential Using Dual-Comb Spectroscopy
使用双梳光谱技术开发非接触式、无标记的膜电位测量
  • 批准号:
    21K19913
  • 财政年份:
    2021
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Polymer-free durable carbon nanotube (CNT) film membrane
I-Corps:不含聚合物的耐用碳纳米管 (CNT) 薄膜
  • 批准号:
    2020016
  • 财政年份:
    2020
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Standard Grant
Improvement of planar bilayer lipid membrane system for ion channels activity recordings using cell-free synthesized ion channel protein array.
使用无细胞合成离子通道蛋白阵列改进用于离子通道活性记录的平面双层脂质膜系统。
  • 批准号:
    20K05709
  • 财政年份:
    2020
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A label-free tool to unravel the dynamics of lipid bilayers containing single membrane proteins: iGOR microscopy
一种解开含有单膜蛋白的脂质双层动力学的无标记工具:iGOR 显微镜
  • 批准号:
    BB/R021899/1
  • 财政年份:
    2019
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Research Grant
Optimization of porous transport layer in carbon-free polymer electrolyte membrane electrolyzers for improved hydrogen infrastructure
优化无碳聚合物电解质膜电解槽中的多孔传输层以改善氢基础设施
  • 批准号:
    518777-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
A silicon nanopore membrane blood filter enabling anticoagulant free continuous renal replacement therapy for acute kidney injury
硅纳米孔膜血液过滤器可实现无抗凝剂的连续肾脏替代治疗急性肾损伤
  • 批准号:
    10546997
  • 财政年份:
    2019
  • 资助金额:
    $ 9.11万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了