Algebraic combinatorics and representation theory

代数组合学和表示论

基本信息

  • 批准号:
    RGPIN-2018-05877
  • 负责人:
  • 金额:
    $ 1.31万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

cyclic sieving phenomenon; homomesy; jeu-de-taquin; Littlewood-Richardson rule; orthosymplectic Lie superalgebras; Pieri rule; representation theory; Schur function; Young tableau
循环筛分现象;同态;Jeu-de-taquin规则;Littlewood-Richardson规则;正交辛李超代数;Pieri规则;表示论;Schur函数;Young表

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stokke, Anna其他文献

Stokke, Anna的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stokke, Anna', 18)}}的其他基金

Algebraic combinatorics and representation theory
代数组合学和表示论
  • 批准号:
    RGPIN-2018-05877
  • 财政年份:
    2020
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic combinatorics and representation theory
代数组合学和表示论
  • 批准号:
    RGPIN-2018-05877
  • 财政年份:
    2019
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic combinatorics and representation theory
代数组合学和表示论
  • 批准号:
    RGPIN-2018-05877
  • 财政年份:
    2018
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic combinatorics and representation theory
代数组合学和表示论
  • 批准号:
    DDG-2015-00045
  • 财政年份:
    2017
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Development Grant
Algebraic combinatorics and representation theory
代数组合学和表示论
  • 批准号:
    DDG-2015-00045
  • 财政年份:
    2015
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Development Grant
Representation of classical and quantum groups
经典群和量子群的表示
  • 批准号:
    261452-2008
  • 财政年份:
    2013
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Representation of classical and quantum groups
经典群和量子群的表示
  • 批准号:
    261452-2008
  • 财政年份:
    2011
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Representation of classical and quantum groups
经典群和量子群的表示
  • 批准号:
    261452-2008
  • 财政年份:
    2010
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Representation of classical and quantum groups
经典群和量子群的表示
  • 批准号:
    261452-2008
  • 财政年份:
    2009
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Representation of classical and quantum groups
经典群和量子群的表示
  • 批准号:
    261452-2008
  • 财政年份:
    2008
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Realization problems in Representation Theory and Algebraic Combinatorics
表示论和代数组合学中的实现问题
  • 批准号:
    RGPIN-2017-05331
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic Combinatorics and Representation Theory
代数组合学和表示论
  • 批准号:
    RGPIN-2016-04999
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic Combinatorics and Representation Theory
代数组合学和表示论
  • 批准号:
    RGPIN-2016-04999
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Realization problems in Representation Theory and Algebraic Combinatorics
表示论和代数组合学中的实现问题
  • 批准号:
    RGPIN-2017-05331
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic combinatorics and representation theory
代数组合学和表示论
  • 批准号:
    RGPIN-2018-05877
  • 财政年份:
    2020
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Realization problems in Representation Theory and Algebraic Combinatorics
表示论和代数组合学中的实现问题
  • 批准号:
    RGPIN-2017-05331
  • 财政年份:
    2020
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Interactions between combinatorics, representation theory, and algebraic geometry
组合数学、表示论和代数几何之间的相互作用
  • 批准号:
    2265021
  • 财政年份:
    2019
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Studentship
Algebraic Combinatorics and Representation Theory
代数组合学和表示论
  • 批准号:
    RGPIN-2016-04999
  • 财政年份:
    2019
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic combinatorics and representation theory
代数组合学和表示论
  • 批准号:
    RGPIN-2018-05877
  • 财政年份:
    2019
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Realization problems in Representation Theory and Algebraic Combinatorics
表示论和代数组合学中的实现问题
  • 批准号:
    RGPIN-2017-05331
  • 财政年份:
    2019
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了