Algebraic Combinatorics and Representation Theory
代数组合学和表示论
基本信息
- 批准号:RGPIN-2016-04999
- 负责人:
- 金额:$ 1.97万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
My research program centres on interactions between representation theory, algebraic combinatorics and random walks on groups and semigroups.The mathematical notion of a representation developed, in part, from investigations into the symmetries of physical objects. The symmetries of an object lead to information about the object itself. For example, if two crystals both exhibit the same intrinsic symmetries, then they will also exhibit the same physical properties. Here, we say that both crystals "represent" the symmetries.This idea is reflected in the mathematical theory of representations. One investigates objects that manifest a given collection of symmetries. These are the representations of the symmetries. One understands them by decomposing them into smaller representations. The indecomposable representations are the building blocks from which all others representations can be constructed. This decomposition problem is very difficult in general.A large portion of my research program is dedicated to developing new techniques for decomposing representations, and to applying them to longstanding decomposition problems: in probability theory (decomposing eigenspaces of symmetrized random walks); in group representation theory (decomposing higher Lie modules); in symmetric function theory (decomposing cohomology representations related to the Stanley-Stembridge e-positivity conjecture).The anticipated outcomes include: advancing our general understanding of decomposition problems; improving our proficiency with decomposition problems by contributing new techniques; and making progress on these longstanding open problems.One of the originalities of my approach exploits connections between algebra, combinatorics and probability theory. Specifically, I will work with algebraic objects related to random walks on hyperplane arrangements (a basic combinatorial invariant associated with a set of symmetries). This seminal theory was initiated by Bidigare, Hanlon and Rockmore (BHR) and further developed and extended by Brown and Diaconis. The above decomposition problems can be recast within this theory and my recent advances with Margolis and Steinberg allow the introduction of topological tools. This presents new promising approaches that have already had several successes.My research program can be implemented in phases, and can easily integrate the training of Masters and PhD students. It can also accommodate undergraduate students, since some portions are very tractable yet stimulating. Furthermore, many facets of my program are amenable to computer algebra explorations. This provides several HQP benefits: the effective development of intuition for research problems; the ability to explore high level examples that would be hard to explore otherwise; and the development of proof strategies through high end formal algebra manipulations.
我的研究项目集中在群和半群上的表示论、代数组合学和随机游动之间的相互作用。表示的数学概念部分是从对物理对象对称性的研究中发展起来的。物体的对称性导致了关于物体本身的信息。例如,如果两个晶体都表现出相同的固有对称性,那么它们也将表现出相同的物理性质。在这里,我们说这两种晶体都“代表”了对称性,这一思想反映在数学的表示理论中。一种是研究表现出给定的对称性集合的物体。这些是对称性的表示。人们通过将它们分解为更小的表示来理解它们。不可分解的表示是所有其他表示可以构造的构建块。这种分解问题通常是非常困难的,我的研究计划的很大一部分致力于开发分解表示的新技术,并将其应用于长期存在的分解问题:在概率论中,(分解对称随机游动的特征空间);在群表示论中(分解高阶Lie模);在对称函数理论中(分解与Stanley-Stembridge正性猜想相关的上同调表示)。预期的结果包括:推进我们对分解问题的一般理解;通过贡献新的技术来提高我们对分解问题的熟练程度;并在这些长期存在的开放问题上取得进展。我的方法的一个独创性在于利用代数,组合学和概率论之间的联系。具体来说,我将处理与超平面排列上的随机游动相关的代数对象(与一组对称性相关的基本组合不变量)。这个开创性的理论由Bidigare,Hanlon和Rockmore(BHR)发起,并由Brown和Diaconis进一步发展和扩展。上述分解问题可以在这个理论中重新定义,我最近与马戈利斯和斯坦伯格的进展允许引入拓扑工具。这提出了新的有前途的方法,已经有几个成功。我的研究计划可以分阶段实施,可以很容易地整合硕士和博士生的培训。它也可以容纳本科生,因为有些部分是非常听话,但刺激。此外,我的程序的许多方面都适合于计算机代数探索。这提供了几个HQP的好处:研究问题的直觉的有效发展;探索高层次的例子,否则将很难探索的能力;和证明策略的发展,通过高端形式代数操作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Saliola, Franco其他文献
Plethysm and the algebra of uniform block permutations
体积和均匀块排列的代数
- DOI:
10.5802/alco.243 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Orellana, Rosa;Saliola, Franco;Schilling, Anne;Zabrocki, Mike - 通讯作者:
Zabrocki, Mike
An insertion algorithm for diagram algebras
图代数的插入算法
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Colmenarejo, Laura;Orellana, Rosa;Saliola, Franco;Schilling, Anne;Zabrocki, Mike - 通讯作者:
Zabrocki, Mike
Saliola, Franco的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Saliola, Franco', 18)}}的其他基金
Algebraic Combinatorics and Representation Theory
代数组合学和表示论
- 批准号:
RGPIN-2016-04999 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Algebraic Combinatorics and Representation Theory
代数组合学和表示论
- 批准号:
RGPIN-2016-04999 - 财政年份:2019
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Algebraic Combinatorics and Representation Theory
代数组合学和表示论
- 批准号:
RGPIN-2016-04999 - 财政年份:2018
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Algebraic Combinatorics and Representation Theory
代数组合学和表示论
- 批准号:
RGPIN-2016-04999 - 财政年份:2017
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Algebraic Combinatorics and Representation Theory
代数组合学和表示论
- 批准号:
RGPIN-2016-04999 - 财政年份:2016
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Algebraic combinatorics and representation theory
代数组合学和表示论
- 批准号:
402589-2011 - 财政年份:2015
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Algebraic combinatorics and representation theory
代数组合学和表示论
- 批准号:
402589-2011 - 财政年份:2014
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Algebraic combinatorics and representation theory
代数组合学和表示论
- 批准号:
402589-2011 - 财政年份:2013
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Algebraic combinatorics and representation theory
代数组合学和表示论
- 批准号:
402589-2011 - 财政年份:2012
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Algebraic combinatorics and representation theory
代数组合学和表示论
- 批准号:
402589-2011 - 财政年份:2011
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Realization problems in Representation Theory and Algebraic Combinatorics
表示论和代数组合学中的实现问题
- 批准号:
RGPIN-2017-05331 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Algebraic Combinatorics and Representation Theory
代数组合学和表示论
- 批准号:
RGPIN-2016-04999 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Realization problems in Representation Theory and Algebraic Combinatorics
表示论和代数组合学中的实现问题
- 批准号:
RGPIN-2017-05331 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Algebraic combinatorics and representation theory
代数组合学和表示论
- 批准号:
RGPIN-2018-05877 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Algebraic combinatorics and representation theory
代数组合学和表示论
- 批准号:
RGPIN-2018-05877 - 财政年份:2020
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Realization problems in Representation Theory and Algebraic Combinatorics
表示论和代数组合学中的实现问题
- 批准号:
RGPIN-2017-05331 - 财政年份:2020
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Interactions between combinatorics, representation theory, and algebraic geometry
组合数学、表示论和代数几何之间的相互作用
- 批准号:
2265021 - 财政年份:2019
- 资助金额:
$ 1.97万 - 项目类别:
Studentship
Algebraic Combinatorics and Representation Theory
代数组合学和表示论
- 批准号:
RGPIN-2016-04999 - 财政年份:2019
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Algebraic combinatorics and representation theory
代数组合学和表示论
- 批准号:
RGPIN-2018-05877 - 财政年份:2019
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Realization problems in Representation Theory and Algebraic Combinatorics
表示论和代数组合学中的实现问题
- 批准号:
RGPIN-2017-05331 - 财政年份:2019
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual