Modeling and Optimal Inference in change-point models with ultra-high dimensional data

超高维数据变点模型的建模和优化推理

基本信息

  • 批准号:
    RGPIN-2019-04464
  • 负责人:
  • 金额:
    $ 1.82万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Modeling and inference about change-points in multivariate or tensor setups appear in many areas of statistical applications such as financial markets, neuroimaging, econometrics, social network analysis and counter-terrorism. This proposal is concerned with developing such methodologies in stochastic differential equations (SDE), fractional stochastic differential equations (fSDE), ordinary differential equations (ODEs). It is composed of three main parts: robust inference in SDE and fSDE models subject to changes, improved inference in high dimensional tensor regression with change-points, and modeling and inference in dynamical systems via ODEs. In Part 1, I will study inference problems in some multivariate SDE with unknown multiple change-points for which the drift parameters may satisfy some restrictions. I will study similar inference problems in context of  fSDE. In both cases, I will consider the general case where the drift coefficient is not necessarily linear. Thus, the methods will be applicable to special cases where the datasets are generated by the generalized Cox-Ingersoll-Ross processes or Ornstein-Uhlenbeck processes. The above problems will also be studied in the context of regime switching. In addition to dealing with complexities brought into these models by the presence of change-points and by the uncertainty in the prior knowledge about the parameters, I plan to develop asymptotic results for the situation where the dimensions of the estimators themselves are random. In Part 2, I will consider inference problems in tensor regression models with multiple change-points when the tensor parameter is suspected to satisfy some restriction. I will also study similar problems in the context of high dimensional data. As compared to similar models in recent literature, I will relax the conditions on the error term so that it does not need to be independent and identically distributed. The dependence structure will be at most that of mixingale. I will also consider the case where the error term is a long memory stationary process.  In Part 3, I will consider the modeling of stochastic versions of dynamical systems such as those appearing in ecological or biomedical systems which are commonly modeled by ODEs.  I will first obtain preliminary nonparametric estimators of the trajectory of the ODEs and then use them to construct estimating functions to make inferences about the parameters of the ODEs. These inferential tools will then be used to detect multiple change-points in such systems. Also in this case, I will relax the commonly used strong assumptions of independence of the errors to the weaker mixingale dependence. For instance, in ecological systems, the proposed models are expected to account for some realistic factors such as animal adaptation, migration and/or hiding strategies.
多变量或张量设置中变化点的建模和推理出现在统计应用的许多领域,如金融市场、神经成像、计量经济学、社会网络分析和反恐。本文主要研究如何在随机微分方程(SDE)、分数阶随机微分方程(fSDE)和常微分方程(ode)中发展这种方法。它主要由三个部分组成:基于变化的SDE和fSDE模型的鲁棒推理,基于变化点的高维张量回归的改进推理,以及基于ode的动态系统建模和推理。在第1部分中,我将研究一些具有未知多个更改点的多变量SDE中的推理问题,其中漂移参数可能满足某些限制。我将在fSDE背景下研究类似的推理问题。在这两种情况下,我将考虑漂移系数不一定是线性的一般情况。因此,该方法将适用于由广义Cox-Ingersoll-Ross过程或Ornstein-Uhlenbeck过程生成数据集的特殊情况。上述问题也将在状态切换的背景下进行研究。除了处理由变化点的存在和参数先验知识的不确定性带来的复杂性之外,我还计划为估计器本身的维度是随机的情况开发渐近结果。在第2部分中,当怀疑张量参数满足某些限制时,我将考虑具有多个更改点的张量回归模型中的推理问题。我还将在高维数据的背景下研究类似的问题。与最近文献中的类似模型相比,我将放宽误差项的条件,使其不需要独立和同分布。依赖结构最多为混合结构。我还将考虑错误项是长记忆平稳过程的情况。在第3部分中,我将考虑动态系统的随机版本的建模,例如那些出现在生态或生物医学系统中的动态系统,它们通常由ode建模。我将首先获得ode轨迹的初步非参数估计量,然后用它们构造估计函数来推断ode的参数。然后,这些推理工具将用于检测此类系统中的多个变更点。同样,在这种情况下,我将把通常使用的错误独立性的强假设放宽为较弱的混合依赖性。例如,在生态系统中,所提出的模型有望考虑到一些现实因素,如动物适应、迁移和/或隐藏策略。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nkurunziza, Sévérien其他文献

Nkurunziza, Sévérien的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nkurunziza, Sévérien', 18)}}的其他基金

Modeling and Optimal Inference in change-point models with ultra-high dimensional data
超高维数据变点模型的建模和优化推理
  • 批准号:
    RGPIN-2019-04464
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Modeling and Optimal Inference in change-point models with ultra-high dimensional data
超高维数据变点模型的建模和优化推理
  • 批准号:
    RGPIN-2019-04464
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Modeling and Optimal Inference in change-point models with ultra-high dimensional data
超高维数据变点模型的建模和优化推理
  • 批准号:
    RGPIN-2019-04464
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Optimal Inference in model subject to changes and modeling in ecological systems via differential equations
受变化影响的模型的最优推理以及通过微分方程对生态系统进行建模
  • 批准号:
    RGPIN-2014-06430
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Optimal Inference in model subject to changes and modeling in ecological systems via differential equations
受变化影响的模型的最优推理以及通过微分方程对生态系统进行建模
  • 批准号:
    RGPIN-2014-06430
  • 财政年份:
    2017
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Optimal Inference in model subject to changes and modeling in ecological systems via differential equations
受变化影响的模型的最优推理以及通过微分方程对生态系统进行建模
  • 批准号:
    RGPIN-2014-06430
  • 财政年份:
    2016
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Evaluating and improving a probabilistic threat assessment algorithm
评估和改进概率威胁评估算法
  • 批准号:
    500261-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Engage Grants Program
Optimal Inference in model subject to changes and modeling in ecological systems via differential equations
受变化影响的模型的最优推理以及通过微分方程对生态系统进行建模
  • 批准号:
    RGPIN-2014-06430
  • 财政年份:
    2015
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Optimal Inference in model subject to changes and modeling in ecological systems via differential equations
受变化影响的模型的最优推理以及通过微分方程对生态系统进行建模
  • 批准号:
    RGPIN-2014-06430
  • 财政年份:
    2014
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Ecological modeling via differential equations and optimal inference strategies
通过微分方程和最优推理策略进行生态建模
  • 批准号:
    327006-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Modeling and Optimal Inference in change-point models with ultra-high dimensional data
超高维数据变点模型的建模和优化推理
  • 批准号:
    RGPIN-2019-04464
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Modeling and Optimal Inference in change-point models with ultra-high dimensional data
超高维数据变点模型的建模和优化推理
  • 批准号:
    RGPIN-2019-04464
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Modeling and Optimal Inference in change-point models with ultra-high dimensional data
超高维数据变点模型的建模和优化推理
  • 批准号:
    RGPIN-2019-04464
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Optimal Inference in model subject to changes and modeling in ecological systems via differential equations
受变化影响的模型的最优推理以及通过微分方程对生态系统进行建模
  • 批准号:
    RGPIN-2014-06430
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Optimal Inference in model subject to changes and modeling in ecological systems via differential equations
受变化影响的模型的最优推理以及通过微分方程对生态系统进行建模
  • 批准号:
    RGPIN-2014-06430
  • 财政年份:
    2017
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Evaluating treatment effect heterogeneity and optimal regimens in multidrug resistant tuberculosis using causal inference modeling
使用因果推理模型评估耐多药结核病的治疗效果异质性和最佳方案
  • 批准号:
    357940
  • 财政年份:
    2016
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Operating Grants
Optimal Inference in model subject to changes and modeling in ecological systems via differential equations
受变化影响的模型的最优推理以及通过微分方程对生态系统进行建模
  • 批准号:
    RGPIN-2014-06430
  • 财政年份:
    2016
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Optimal Inference in model subject to changes and modeling in ecological systems via differential equations
受变化影响的模型的最优推理以及通过微分方程对生态系统进行建模
  • 批准号:
    RGPIN-2014-06430
  • 财政年份:
    2015
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Optimal Inference in model subject to changes and modeling in ecological systems via differential equations
受变化影响的模型的最优推理以及通过微分方程对生态系统进行建模
  • 批准号:
    RGPIN-2014-06430
  • 财政年份:
    2014
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Ecological modeling via differential equations and optimal inference strategies
通过微分方程和最优推理策略进行生态建模
  • 批准号:
    327006-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了