Optimal Inference in model subject to changes and modeling in ecological systems via differential equations

受变化影响的模型的最优推理以及通过微分方程对生态系统进行建模

基本信息

  • 批准号:
    RGPIN-2014-06430
  • 负责人:
  • 金额:
    $ 1.02万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

In this project, I will propose a class of optimal inference strategies which includes statistical methods known as shrinkage. These strategies are useful in variety of models for large number of real-life phenomena such as predator-prey systems, surveillance of infectious diseases, financial markets and Neuroimaging. Recently, my co-authors and I, have extended, for the first time, some optimal strategies to a class of multivariate regression models in which the target parameter are matrices satisfying a restriction which includes the homogeneity and parallelism of the responses as special cases (Nkurunziza and Ahmed (2011: Stat. neerl., 65, 4, 387-406), Nkurunziza (2012a) [Stamet, 9, 3, 353-363]). My goal in this project is to, further, extend these results in three directions: a) I will extend the existing restrictions. b) I will relax the restrictive assumptions of independence imposed on the noise and on the explanatory variables to a more general dependence structure and hence, under such realistic assumptions, I will study the large-sample properties of the model coefficient estimators. c) Under the set-up in (b), I will consider estimation of the parameter matrices under multiple change points or the so called regime switching models, which appear in climate change, environmental monitoring as well as monitoring of financial markets. Estimation of multiple change points in the context of the above models has not been considered in the literature as far as I am aware of. The models which I will consider will include linear, nonlinear models as well as the extended version of the survival models in Hussein et al. (2013) and Nkurunziza et al. (2013). Beyond these regression models, I will also consider estimation of parameters in some multivariate models which are useful in public health and financial markets. Such models are usually handled via stochastic differential equations (SDE) with regime switching for which the current literature offers the maximum likelihood estimators (MLEs) as the estimators of choice. However, since the MLEs are not in closed forms, for many practical cases, their large-sample results are not well known. In the short and medium term, I am planning to study the asymptotic properties of these MLEs and furthermore, I will propose optimal strategies for these models when the parameter matrices are suspected to satisfy a more general restriction than in Nkurunziza (2013) [Sankhya A, 75, 2, 211-230]. I will derive the asymptotic results of the restricted and the unrestricted estimators and then, construct a class of shrinkage estimators. These shrinkage estimators include, as special cases, the MLEs and the Stein-type estimators. Given the complexity of such models, the derivation of the asymptotic properties of the matrix estimators is not straightforward. In addition, the derivation of the asymptotic distributional risk and bias will be mathematically challenging and, hence, the existing instrumental identities in Nkurunziza (2012a op. cit.) and Nkurunziza (2012b) [Statistics, 46, 3, 305-312] may not be helpful. Therefore, I will also generalize such identities in contexts of Gaussian matrix for which the covariance matrix is a sum of k (k > 2) Kronecker products not necessarily invertible, matrix elliptically contoured variates as well as in context of Hilbertian random matrix. The last part of the project, is to extend the inference methods for prey-predator models proposed in Froda and Nkurunziza (2007), and Nkurunziza (2010). The new method will incorporate realistic factors such as animal adaption factor, hiding strategies, seasonal effects and multiple species. I will also relax the assumptions on the noise.
在这个项目中,我将提出一类最优推理策略,其中包括称为收缩的统计方法。这些策略在大量真实生活现象的各种模型中很有用,例如捕食者-猎物系统、传染病监测、金融市场和神经成像。最近,我和我的合著者首次将一些最优策略推广到一类多元回归模型,其中目标参数是满足约束的矩阵,该约束包括响应的齐性和并行性作为特例(Nkurunziza和Ahmed(2011:Stat.Nkurunziza(2012a)[Stamet,9,3,353-363])。我在这个项目中的目标是,在三个方向上进一步推广这些结果:a)我将扩大现有的限制。B)我将放宽对噪声和解释变量施加的独立性的限制性假设,使之具有更一般的相依结构,因此,在这种现实的假设下,我将研究模型系数估计量的大样本性质。C)在(B)项的安排下,我会考虑在气候变化、环境监测和金融市场监测中出现的多个变化点或所谓的制度转换模型下的参数矩阵的估计。据我所知,在上述模型的背景下估计多个变化点的文献中没有考虑过。我将考虑的模型将包括线性、非线性模型以及Hussein等人的生存模型的扩展版本。(2013)和恩库伦齐扎等人。(2013年)。除了这些回归模型,我还将考虑在公共卫生和金融市场中有用的一些多变量模型中的参数估计。这类模型通常是通过带状态切换的随机微分方程(SDE)来处理的,目前的文献提供了极大似然估计量(MLE)作为估计量的选择。然而,由于MLE不是封闭形式,对于许多实际情况,其大样本结果并不为人所知。在短期和中期,我计划研究这些模型的渐近性质,而且,当参数矩阵被怀疑满足比Nkurunziza(2013)更一般的限制时,我将为这些模型提出最优策略[Sankhya A,75,2,211-230]。我将得到受限估计和非受限估计的渐近结果,然后构造一类收缩估计。作为特例,这些收缩估计包括MLES估计和Stein型估计。考虑到这类模型的复杂性,矩阵估计量的渐近性质的推导并不简单。此外,渐近分布风险和偏差的推导在数学上将具有挑战性,因此,恩库伦齐扎现有的工具恒等式(2012a,OP.如图所示)和恩库伦齐扎(2012b)[统计,46,3,305-312]可能没有帮助。因此,我还将在协方差矩阵是k(k>2)个Kronecker积的和不一定可逆的矩阵椭圆等值线变量的高斯矩阵的上下文中以及在Hilbertian随机矩阵的上下文中推广这样的恒等式。该项目的最后部分是扩展Froda和Nkurunziza(2007)以及Nkurunziza(2010)中提出的关于捕食者-猎物模型的推理方法。新方法将纳入动物适应因素、隐藏策略、季节性影响和多种物种等现实因素。我也会放松对噪音的假设。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nkurunziza, Sévérien其他文献

Nkurunziza, Sévérien的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nkurunziza, Sévérien', 18)}}的其他基金

Modeling and Optimal Inference in change-point models with ultra-high dimensional data
超高维数据变点模型的建模和优化推理
  • 批准号:
    RGPIN-2019-04464
  • 财政年份:
    2022
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Modeling and Optimal Inference in change-point models with ultra-high dimensional data
超高维数据变点模型的建模和优化推理
  • 批准号:
    RGPIN-2019-04464
  • 财政年份:
    2021
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Modeling and Optimal Inference in change-point models with ultra-high dimensional data
超高维数据变点模型的建模和优化推理
  • 批准号:
    RGPIN-2019-04464
  • 财政年份:
    2020
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Modeling and Optimal Inference in change-point models with ultra-high dimensional data
超高维数据变点模型的建模和优化推理
  • 批准号:
    RGPIN-2019-04464
  • 财政年份:
    2019
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Optimal Inference in model subject to changes and modeling in ecological systems via differential equations
受变化影响的模型的最优推理以及通过微分方程对生态系统进行建模
  • 批准号:
    RGPIN-2014-06430
  • 财政年份:
    2017
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Optimal Inference in model subject to changes and modeling in ecological systems via differential equations
受变化影响的模型的最优推理以及通过微分方程对生态系统进行建模
  • 批准号:
    RGPIN-2014-06430
  • 财政年份:
    2016
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Evaluating and improving a probabilistic threat assessment algorithm
评估和改进概率威胁评估算法
  • 批准号:
    500261-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Engage Grants Program
Optimal Inference in model subject to changes and modeling in ecological systems via differential equations
受变化影响的模型的最优推理以及通过微分方程对生态系统进行建模
  • 批准号:
    RGPIN-2014-06430
  • 财政年份:
    2015
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Optimal Inference in model subject to changes and modeling in ecological systems via differential equations
受变化影响的模型的最优推理以及通过微分方程对生态系统进行建模
  • 批准号:
    RGPIN-2014-06430
  • 财政年份:
    2014
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Ecological modeling via differential equations and optimal inference strategies
通过微分方程和最优推理策略进行生态建模
  • 批准号:
    327006-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

CAREER: Efficient Large Language Model Inference Through Codesign: Adaptable Software Partitioning and FPGA-based Distributed Hardware
职业:通过协同设计进行高效的大型语言模型推理:适应性软件分区和基于 FPGA 的分布式硬件
  • 批准号:
    2339084
  • 财政年份:
    2024
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Continuing Grant
Can one size fit all? - High-Resolution 3D Genome Spatial Organization Inference with Generalizable Models
一种尺寸可以适合所有人吗?
  • 批准号:
    10707587
  • 财政年份:
    2023
  • 资助金额:
    $ 1.02万
  • 项目类别:
Building a Commonsense Reasoning Model Considering Inference Process on Event Relational Knowledge
考虑事件关系知识的推理过程构建常识推理模型
  • 批准号:
    22KJ1921
  • 财政年份:
    2023
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Cognitive and Neural Strategies for Latent Feature Inference
潜在特征推理的认知和神经策略
  • 批准号:
    10662877
  • 财政年份:
    2023
  • 资助金额:
    $ 1.02万
  • 项目类别:
Novel and Rigorous Statistical Learning and Inference for Comparative Effectiveness Research with Complex Data
复杂数据比较有效性研究的新颖而严格的统计学习和推理
  • 批准号:
    10635323
  • 财政年份:
    2023
  • 资助金额:
    $ 1.02万
  • 项目类别:
Inference by interference: Task-dependent pupil responses as an early detection method for Alzheimer's disease related brainstem functional change
干扰推理:任务依赖性瞳孔反应作为阿尔茨海默病相关脑干功能变化的早期检测方法
  • 批准号:
    10805667
  • 财政年份:
    2023
  • 资助金额:
    $ 1.02万
  • 项目类别:
Learning-Enabled Autonomous Decision-Support for Blood Pressure Management in Hemorrhage Resuscitation via Population-Informed Statistical Inference
通过基于人群的统计推断,为出血复苏中的血压管理提供学习型自主决策支持
  • 批准号:
    10727737
  • 财政年份:
    2023
  • 资助金额:
    $ 1.02万
  • 项目类别:
Investigation and deployment of novel Bayesian inference algorithms in CAVATICA for identifying genomic variants underlying congenital heart defects in Down syndrome individuals
在 CAVATICA 中研究和部署新型贝叶斯推理算法,用于识别唐氏综合症个体先天性心脏缺陷的基因组变异
  • 批准号:
    10658217
  • 财政年份:
    2023
  • 资助金额:
    $ 1.02万
  • 项目类别:
Research and development of an adverse outcome pathway-focused mechanistic inference tool for 'omics data using semantic knowledge graphs
使用语义知识图研究和开发针对“组学数据”的以不良结果途径为中心的机械推理工具
  • 批准号:
    10761637
  • 财政年份:
    2023
  • 资助金额:
    $ 1.02万
  • 项目类别:
Inference of mechanisms regulating the nucleome in non-aging model organisms
非衰老模型生物中核组调节机制的推断
  • 批准号:
    23K18086
  • 财政年份:
    2023
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了