Algorithmic Prediction of Human Strategic Behaviour

人类战略行为的算法预测

基本信息

  • 批准号:
    RGPIN-2019-04274
  • 负责人:
  • 金额:
    $ 2.84万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Settings in which participants reason strategically are widespread in artificial intelligence; they include any system that interacts with a human. These range from systems with large numbers of participants accounting for billions of dollars in transactions, such as ad auctions and radio spectrum allocation, to interactions with just a few participants, such as computer games or intelligent user interfaces. Regardless of the scale of such a system for interacting with humans, alternative designs must be evaluated either by trying each one out--frequently a very expensive and time-consuming proposition--or via their predicted performance based on a model of how participants will react to them. Hence, accurate behavioural models are valuable tools for improving both the design of agents and the design of the systems themselves. One possible candidate for such a model is game theory, the standard mathematical framework for understanding strategic interactions. However, it has been demonstrated from experimental data that standard game theoretic models describe human behaviour poorly. This inadequacy stems from their assumption that participants are perfectly rational agents. However, thanks to algorithmic advances and increased computing power and data availability, we now have the ability to go beyond the classical economic rationality assumptions to accurately predict actual human behaviour. The proposed research will develop substantially stronger models by taking realistic domain-specific problem structure into account. The realism to be considered will include: participants with large action sets; reasoning about large sets of other participants; receiving and learning from feedback as they interact with a system; reasoning about the learning of other participants. I will build on my previous work to construct models that predict behaviour in these richer environments. I will focus on two kinds of strategic interactions. The first is interactions with humans in relatively fixed environments. The specific domains will be allocation of security resources for malware and fraud detection, more realistic play in games, and optimal traffic advice. The other kind of interaction is the design of policies and incentives for coordinating the behaviour of multiple people, with a focus on the design of peer grading incentives that cannot be "gamed". The second problem of designing the strategic environment itself is referred to as mechanism design, and it is an increasingly important area of algorithmic game theory. There is a great opportunity for behaviourally informed mechanism design, as existing work is still very tied to the full rationality model.
参与者战略性推理的设置在人工智能中很普遍;它们包括任何与人类交互的系统。这些系统包括大量参与者占数十亿美元交易的系统,如广告拍卖和无线电频谱分配,以及仅与少数参与者进行交互的系统,如计算机游戏或智能用户界面。无论这种与人类互动的系统的规模如何,替代设计都必须通过尝试每一个来评估-通常是一个非常昂贵和耗时的提议-或者通过基于参与者将如何反应的模型的预测性能来评估。因此,准确的行为模型是改善代理设计和系统本身设计的宝贵工具。这种模型的一个可能的候选者是博弈论,这是理解战略互动的标准数学框架。然而,实验数据表明,标准的博弈论模型对人类行为的描述很差。这种不足源于他们的假设,即参与者是完全理性的代理人。然而,由于算法的进步以及计算能力和数据可用性的提高,我们现在有能力超越经典的经济理性假设,准确预测实际的人类行为。拟议的研究将开发更强大的模型,考虑到现实的特定领域的问题结构。要考虑的现实主义将包括:参与者与大型行动集;推理其他参与者的大型集合;接收和学习反馈,因为他们与系统交互;推理其他参与者的学习。我将在我以前的工作的基础上构建模型,预测在这些更丰富的环境中的行为。我将重点讨论两种战略互动。第一个是在相对固定的环境中与人类的互动。具体的领域将是分配安全资源用于恶意软件和欺诈检测,更真实的游戏以及最佳的流量建议。另一种互动是为协调多人行为而设计政策和激励措施,重点是设计不能“玩游戏”的同行分级激励措施。设计战略环境本身的第二个问题被称为机制设计,它是算法博弈论中一个日益重要的领域。有一个很大的机会,行为知情的机制设计,因为现有的工作仍然是非常依赖于完整的理性模型。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wright, James其他文献

Analysis of COVID-19 burden, epidemiology and mitigation strategies in Muslim majority countries
  • DOI:
    10.26719/emhj.20.120
  • 发表时间:
    2020-10-01
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Jardine, Rachel;Wright, James;Bhutta, Zulfiqar A.
  • 通讯作者:
    Bhutta, Zulfiqar A.
Food waste and the food-energy-water nexus: A review of food waste management alternatives
  • DOI:
    10.1016/j.wasman.2018.01.014
  • 发表时间:
    2018-04-01
  • 期刊:
  • 影响因子:
    8.1
  • 作者:
    Kibler, Kelly M.;Reinhart, Debra;Wright, James
  • 通讯作者:
    Wright, James
Enhancing base-metal exploration with seismic imaging
  • DOI:
    10.1139/e09-047
  • 发表时间:
    2010-05-01
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Eaton, David W.;Adam, Erick;Wright, James
  • 通讯作者:
    Wright, James
Acute-phase response reactants as objective biomarkers of radiation-induced mucositis in head and neck cancer
Association of cancer center type with treatment patterns and overall survival for patients with sacral and spinal chordomas: an analysis of the National Cancer Database from 2004 to 2015
  • DOI:
    10.3171/2019.7.spine19566
  • 发表时间:
    2020-02-01
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Wright, Christina Huang;Wright, James;Sloan, Andrew E.
  • 通讯作者:
    Sloan, Andrew E.

Wright, James的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wright, James', 18)}}的其他基金

Algorithmic Prediction of Human Strategic Behaviour
人类战略行为的算法预测
  • 批准号:
    RGPIN-2019-04274
  • 财政年份:
    2022
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithmic Prediction of Human Strategic Behaviour
人类战略行为的算法预测
  • 批准号:
    RGPIN-2019-04274
  • 财政年份:
    2020
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithmic Prediction of Human Strategic Behaviour
人类战略行为的算法预测
  • 批准号:
    DGECR-2019-00492
  • 财政年份:
    2019
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Launch Supplement
Algorithmic Prediction of Human Strategic Behaviour
人类战略行为的算法预测
  • 批准号:
    RGPIN-2019-04274
  • 财政年份:
    2019
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
The mimimax regret criterion for modeling boundedly rational agents
用于建模有限理性主体的最小最大遗憾标准
  • 批准号:
    361477-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
The mimimax regret criterion for modeling boundedly rational agents
用于建模有限理性主体的最小最大遗憾标准
  • 批准号:
    361477-2009
  • 财政年份:
    2011
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
The mimimax regret criterion for modeling boundedly rational agents
用于建模有限理性主体的最小最大遗憾标准
  • 批准号:
    361477-2009
  • 财政年份:
    2010
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Targeting nuclear receptors with novel synthetic ligands
用新型合成配体靶向核受体
  • 批准号:
    6580-2009
  • 财政年份:
    2009
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
The mimimax regret criterion for modeling boundedly rational agents
用于建模有限理性主体的最小最大遗憾标准
  • 批准号:
    361477-2009
  • 财政年份:
    2009
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Novel antioxidants to combat oxidative stress: theoretical design and experimental tests of activity
对抗氧化应激的新型抗氧化剂:理论设计和活性实验测试
  • 批准号:
    6580-2004
  • 财政年份:
    2008
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Establishment of human abdominal aortic aneurysm wall strength prediction model using Ex Vivo Superparamagnetic Iron Oxide–Enhanced Magnetic Resonance Imaging
利用Ex Vivo超顺磁性氧化铁建立人体腹主动脉瘤壁强度预测模型
  • 批准号:
    23K08226
  • 财政年份:
    2023
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Generalized prediction errors in the human cerebellum
人类小脑的广义预测误差
  • 批准号:
    10715334
  • 财政年份:
    2023
  • 资助金额:
    $ 2.84万
  • 项目类别:
Multi-ethnic risk prediction for complex human diseases integrating multi-source genetic and non-genetic information
整合多源遗传与非遗传信息的人类复杂疾病多民族风险预测
  • 批准号:
    10754773
  • 财政年份:
    2023
  • 资助金额:
    $ 2.84万
  • 项目类别:
Prediction of inhibitors for human-virus protein-protein interactions based on innovative AI technologies
基于创新人工智能技术预测人-病毒蛋白质-蛋白质相互作用的抑制剂
  • 批准号:
    22KJ2495
  • 财政年份:
    2023
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Using human genetics to identify novel biomarkers for enhanced prediction and early detection of cancer
利用人类遗传学来识别新的生物标志物,以增强癌症的预测和早期检测
  • 批准号:
    2897051
  • 财政年份:
    2023
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Studentship
Low-latency Vision Augmentation Integrating High-Speed Human and Environmental Measurements with Field-of-View Prediction
将高速人体和环境测量与视场预测相结合的低延迟视觉增强
  • 批准号:
    22KJ0753
  • 财政年份:
    2023
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
ERI: High-performance Human-robot Collaborative Manufacturing Enabled by Integrated Multimodal Teaching, Learning, Prediction and Interaction
ERI:通过集成多模态教学、学习、预测和交互实现高性能人机协作制造
  • 批准号:
    2138351
  • 财政年份:
    2022
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Standard Grant
CAREER: Human Mobility Prediction and Intervention based on Cross-Domain Infrastructure-Human Interactions
职业:基于跨域基础设施-人类交互的人类流动预测和干预
  • 批准号:
    2047822
  • 财政年份:
    2022
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Continuing Grant
MARINE BIODIVERSITY ASSESSMENT AND PREDICTION ACROSS SPATIAL, TEMPORAL AND HUMAN SCALES
跨空间、时间和人类尺度的海洋生物多样性评估和预测
  • 批准号:
    10044425
  • 财政年份:
    2022
  • 资助金额:
    $ 2.84万
  • 项目类别:
    EU-Funded
Effect of variability on the prediction of crash-induced injury using computational human body models
变异性对使用计算人体模型预测碰撞引起的伤害的影响
  • 批准号:
    558838-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了