Regulation of nutrient-stress signaling through the plant vascular system
通过植物维管系统调节营养胁迫信号
基本信息
- 批准号:RGPIN-2019-04421
- 负责人:
- 金额:$ 2.4万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Application of nitrogen/phosphorous/potassium fertilizers enables us to achieve enhanced productivity in agriculture. Modern breeding program has sought to develop crop species to increase nutrient use efficiency for achieving sustainable crop yield and ensuring global food security under reduced/limited fertilizer inputs. Once plants face limitations in mineral nutrient availability, roots are usually the first tissues to respond to these stress conditions which are sensed by root-localized mechanisms; the root translates these stresses into the root-derived signals that are transported through the xylem to communicate the challenging conditions to the shoot. Delivery of these signals to vegetative tissues elicits production of specific output signals that enter the phloem to carry commands from the shoot, back to the root, to integrate the requirements for developmental and physiological processes. Although there is clear evidence in the literature that the plant vascular system functions as the effective communication pathway, much remains to be discovered in terms of the signaling components in these pathways and how they function in mineral nutrient homeostasis. The long-term goal of my research program is to verify molecular regulatory mechanisms in nutrient-stress signaling, mediated by the root-shoot communication through the plant vascular system, especially the phloem. To advance the knowledge of the phloem function in long-distance nutrient-stress signaling, I outline here a strategy to identify regulatory mechanisms involved in integrating nutrient homeostasis by phloem-mediated long-distance signaling molecules. Limited information is available on the role of phloem mobile molecules in nutrient-stress signaling, and the utilization of functional genomics, bioinformatics, physiological and protein biochemistry studies will be involved to address the following objectives: 1) Determine which nutrient-stress responsive phloem proteins traffic to the root and shoot apex, 2) Characterize mobile transcription factors which function in gene regulatory pathways at the sites the signals are delivered to responsive sink tissues, 3) Validate the role of these identified phloem-mobile signaling molecules in plant developmental adaptive responses to nutrient-stress conditions. The studies described in this proposal will provide increased understanding and new insights into molecular regulatory mechanisms that serve in nutrient uptake and utilization in plants, mediated by phloem-based systems. This knowledge would offer potential gene targets and a basis for breeding programs aimed at enhancing nutrient use efficiency in crop plants.
氮、磷、钾肥的应用使我们能够提高农业生产率。现代育种计划寻求发展作物品种,以提高养分利用效率,以实现作物的可持续产量,并在减少/限制化肥投入的情况下确保全球粮食安全。一旦植物面临矿质养分供应的限制,根通常是第一个对这些胁迫条件做出反应的组织,这些胁迫是由根定位的机制感受到的;根将这些胁迫转化为根衍生的信号,通过木质部传输,将具有挑战性的条件传达给地上部分。将这些信号传递到营养组织会产生特定的输出信号,这些信号进入韧皮部,将指令从茎带回根,整合发育和生理过程的需要。虽然文献中有明确的证据表明植物维管系统是有效的信息传递途径,但关于这些途径中的信号成分以及它们如何在矿质营养动态平衡中发挥作用,仍有许多有待发现。我的研究计划的长期目标是验证营养胁迫信号的分子调控机制,这种机制是通过植物维管系统,特别是韧皮部的根冠通讯来调节的。为了进一步了解韧皮部在长距离营养胁迫信号传递中的作用,我在这里概述了一种策略,通过韧皮部介导的长距离信号分子来识别参与整合营养动态平衡的调控机制。目前有关韧皮部移动分子在营养胁迫信号传递中的作用的信息有限,将利用功能基因组学、生物信息学、生理和蛋白质生物化学研究来解决以下目标:1)确定哪些营养胁迫响应韧皮部蛋白运输到根部和顶端;2)确定哪些可移动转录因子在信号传递到库区组织的基因调控途径中起作用;3)验证这些已确定的韧皮部移动信号分子在植物对营养胁迫条件的发育适应反应中的作用。这项提案中描述的研究将增加对分子调控机制的理解和新的见解,分子调控机制在植物中由韧皮部系统介导的养分吸收和利用。这些知识将为旨在提高作物养分利用效率的育种计划提供潜在的基因靶点和基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ham, ByungKook其他文献
Ham, ByungKook的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ham, ByungKook', 18)}}的其他基金
Regulation of nutrient-stress signaling through the plant vascular system
通过植物维管系统调节营养胁迫信号
- 批准号:
RGPIN-2019-04421 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Regulation of nutrient-stress signaling through the plant vascular system
通过植物维管系统调节营养胁迫信号
- 批准号:
RGPIN-2019-04421 - 财政年份:2020
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Regulation of nutrient-stress signaling through the plant vascular system
通过植物维管系统调节营养胁迫信号
- 批准号:
DGECR-2019-00140 - 财政年份:2019
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Launch Supplement
Regulation of nutrient-stress signaling through the plant vascular system
通过植物维管系统调节营养胁迫信号
- 批准号:
RGPIN-2019-04421 - 财政年份:2019
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
LncRNA-G8在葡萄糖饥饿应激时调控肿瘤细胞DNA损伤修复的功能和机制研究
- 批准号:32000526
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
CIDE家族蛋白泛素化降解的机制和功能研究
- 批准号:31970707
- 批准年份:2019
- 资助金额:52.0 万元
- 项目类别:面上项目
自噬信号调控自噬前体招募WIPI2蛋白的机制和功能
- 批准号:31970694
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
葡萄糖缺乏诱导的长链非编码RNA-GDLR促进肝癌细胞存活和增殖的作用及机制研究
- 批准号:91957108
- 批准年份:2019
- 资助金额:86.0 万元
- 项目类别:重大研究计划
相似海外基金
Regulation of neuronal function by mitochondrial uncoupling
通过线粒体解偶联调节神经元功能
- 批准号:
10664198 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Arginyl-tRNA beyond translation: mechanism and regulation of protein arginylation
超越翻译的精氨酰-tRNA:蛋白质精氨酰化的机制和调控
- 批准号:
10711167 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
LITAF regulation of cell death and inflammatory responses
LITAF 调节细胞死亡和炎症反应
- 批准号:
10886166 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Regulation of CSE-Derived Hydrogen Sulfide in the Heart
CSE 衍生的硫化氢在心脏中的调节
- 批准号:
10659832 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Nutrient-sensor O-GlcNAc Transferase Regulation of Autophagy in Homeostatis of Pancreatic Beta-cell Mass and Function
营养传感器 O-GlcNAc 转移酶对胰腺 β 细胞质量和功能稳态中自噬的调节
- 批准号:
10907874 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Lifespan Regulation by Inter-Organellar Heme Signaling
细胞间血红素信号传导的寿命调节
- 批准号:
10722824 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Project 4: Regulation of EBV Latency and Oncogenesis by Hypoxia
项目4:缺氧对EBV潜伏期和肿瘤发生的调节
- 批准号:
10714176 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Mechanical regulation of intestine stem cell-mediated tissue homeostasis in Drosophila
果蝇肠干细胞介导的组织稳态的机械调节
- 批准号:
10638341 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Regulation of Mitochondrial Remodeling in Adipose Thermogenesis
脂肪产热中线粒体重塑的调节
- 批准号:
10718432 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Redox Regulation of DksA-dependent Borrelia burgdorferi infectivity
DksA 依赖性伯氏疏螺旋体感染性的氧化还原调节
- 批准号:
10585293 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别: