Resource Management in Cloud Radio Networks

云无线电网络中的资源管理

基本信息

  • 批准号:
    RGPIN-2019-04819
  • 负责人:
  • 金额:
    $ 2.48万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

The explosive growth in creation and consumption of content on mobile devices has led to a massive increase in mobile data traffic in recent years. In order to satisfy growing user demands, mobile network operators are increasingly moving toward denser deployment of base stations. However, deploying a large number of base stations results in significant increases in capital and operational costs of the network. Cloud radio access network (CRAN) is an emerging mobile network architecture in which signal processing functions are moved to a datacenter, turning base stations into simple low-cost remote radio units. Not only the cloud-based architecture reduces the cost and complexity of deploying more base stations, but also allows signal processing functions to be virtualized in software modules that can be dynamically scaled to adapt to varying user demands, improving network scalability and performance. While CRAN is conceptually simple, several technological and intellectual challenges need to be addressed before it can be realized. A key challenge is the efficient and effective management of intertwined radio (e.g., radio frequency and transmit power) and datacenter (e.g., servers and interconnection links) resources. Our research view is that separate management of these resources is not optimal, even if each one is managed based on state-of-the-art techniques. The goal of this Discovery Program is to introduce and study, in a unified way, optimal or close to optimal algorithms for resource management in CRAN. One of the major concepts we pursue in our research, which has direct practical implications, is proactive resource management, where it is guaranteed that our algorithms perform well under dynamic demands without requiring costly and disruptive reconfigurations. We aim to make foundational contributions toward proactive resource management in cloud radio access networks by developing frameworks to study: i) online resource management, when no information about future demands is available, ii) robust resource management, when only partial information about future demands is available, and iii) autonomic resource management, when the optimal resource management algorithm is learnt autonomously. We focus on CRAN, having future mobile technologies in mind, but the basic tools and approaches to be built and researched are relevant to other cloud-based systems as well. The proposed research will produce new algorithms and theoretical frameworks for resource management in cloud-centric mobile networks. It will provide other researchers with an innovative framework to design autonomic resource management algorithms as well as a suite of efficient algorithms based on conventional optimization techniques, whose performance characteristics and trade-offs are well quantified. Canadian mobile operators and cloud service providers will be able to use our results to better inform their decisions when planning new services and applications.
近年来,移动的设备上的内容的创建和消费的爆炸性增长导致了移动的数据流量的大规模增加。为了满足不断增长的用户需求,移动的网络运营商正日益朝着基站的密集部署发展。然而,部署大量基站导致网络的资本和运营成本显著增加。云无线电接入网络(CRAN)是一种新兴的移动的网络架构,其中信号处理功能被转移到数据中心,将基站变成简单的低成本远程无线电单元。基于云的架构不仅降低了部署更多基站的成本和复杂性,还允许在软件模块中虚拟化信号处理功能,这些模块可以动态扩展以适应不同的用户需求,从而提高网络可扩展性和性能。 虽然CRAN在概念上很简单,但在实现之前需要解决一些技术和智力挑战。一个关键的挑战是对交织的无线电(例如,射频和发射功率)和数据中心(例如,服务器和互连链路)资源。我们的研究观点是,对这些资源的单独管理不是最佳的,即使每一个都是基于最先进的技术进行管理。这个发现计划的目标是以统一的方式介绍和研究CRAN中资源管理的最佳或接近最佳的算法。我们在研究中追求的主要概念之一,具有直接的实际意义,是主动的资源管理,保证我们的算法在动态需求下表现良好,而不需要昂贵和破坏性的重新配置。我们的目标是通过开发框架来研究:i)在线资源管理,当没有关于未来需求的信息时,ii)鲁棒的资源管理,当只有关于未来需求的部分信息可用时,以及iii)自主资源管理,当自主学习最佳资源管理算法时,为云无线电接入网络中的主动资源管理做出基础性贡献。我们专注于CRAN,考虑到未来的移动的技术,但要构建和研究的基本工具和方法也与其他基于云的系统相关。该研究将为以云为中心的移动的网络资源管理提供新的算法和理论框架。它将为其他研究人员提供一个创新的框架来设计自主资源管理算法,以及一套有效的算法的基础上,传统的优化技术,其性能特征和权衡是很好的量化。加拿大的移动的运营商和云服务提供商将能够使用我们的结果,在规划新服务和应用程序时更好地为他们的决策提供信息。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ghaderi, Majid其他文献

Energy-Efficient Routing in Wireless Networks in the Presence of Jamming
Probabilistic Virtual Link Embedding Under Demand Uncertainty
Minimum-Energy Cooperative Routing in Wireless Networks with Channel Variations
Minimum Energy Routing and Jamming to Thwart Wireless Network Eavesdroppers
  • DOI:
    10.1109/tmc.2014.2354031
  • 发表时间:
    2015-07-01
  • 期刊:
  • 影响因子:
    7.9
  • 作者:
    Ghaderi, Majid;Goeckel, Dennis;Dehghan, Mostafa
  • 通讯作者:
    Dehghan, Mostafa
On the optimal randomized clustering in distributed sensor networks
  • DOI:
    10.1016/j.bjp.2013.12.008
  • 发表时间:
    2014-02-11
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Dabirmoghaddam, Ali;Ghaderi, Majid;Williamson, Carey
  • 通讯作者:
    Williamson, Carey

Ghaderi, Majid的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ghaderi, Majid', 18)}}的其他基金

Resource Management in Cloud Radio Networks
云无线电网络中的资源管理
  • 批准号:
    RGPIN-2019-04819
  • 财政年份:
    2022
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
NeuroPAD: A Neural Process-level Anomaly Detection for Industrial Control Systems
NeuroPAD:工业控制系统的神经过程级异常检测
  • 批准号:
    548563-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Alliance Grants
NeuroPAD: A Neural Process-level Anomaly Detection for Industrial Control Systems
NeuroPAD:工业控制系统的神经过程级异常检测
  • 批准号:
    548563-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Alliance Grants
Resource Management in Cloud Radio Networks
云无线电网络中的资源管理
  • 批准号:
    RGPIN-2019-04819
  • 财政年份:
    2020
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Resource Management in Cloud Radio Networks
云无线电网络中的资源管理
  • 批准号:
    RGPIN-2019-04819
  • 财政年份:
    2019
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Integrating Predictive Maintenance Analytics into a Cloud-based CMMS for Smart Work Order Management and Resource Allocation
将预测维护分析集成到基于云的 CMMS 中,以实现智能工单管理和资源分配
  • 批准号:
    549993-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Alliance Grants
Resource Management in Cloud Radio Networks
云无线电网络中的资源管理
  • 批准号:
    RGPIN-2019-04819
  • 财政年份:
    2022
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Microservices based Resource Management for next generation Cloud Computing paradigm
基于微服务的下一代云计算范式的资源管理
  • 批准号:
    RGPIN-2021-04018
  • 财政年份:
    2022
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Microservices based Resource Management for next generation Cloud Computing paradigm
基于微服务的下一代云计算范式的资源管理
  • 批准号:
    RGPIN-2021-04018
  • 财政年份:
    2021
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Integrating Predictive Maintenance Analytics into a Cloud-based CMMS for Smart Work Order Management and Resource Allocation
将预测维护分析集成到基于云的 CMMS 中,以实现智能工单管理和资源分配
  • 批准号:
    549993-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Alliance Grants
A Unified Framework for Resource Management in Edge-Cloud Data Centres
边缘云数据中心资源管理的统一框架
  • 批准号:
    DP200103494
  • 财政年份:
    2020
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Projects
Integrating Predictive Maintenance Analytics into a Cloud-based CMMS for Smart Work Order Management and Resource Allocation
将预测维护分析集成到基于云的 CMMS 中,以实现智能工单管理和资源分配
  • 批准号:
    549993-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Alliance Grants
Resource Management in Cloud Radio Networks
云无线电网络中的资源管理
  • 批准号:
    RGPIN-2019-04819
  • 财政年份:
    2020
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Intelligent Cloud Resource Management using Deep Reinforcement Learning
使用深度强化学习的智能云资源管理
  • 批准号:
    20K19931
  • 财政年份:
    2020
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Resource Management in Cloud Radio Networks
云无线电网络中的资源管理
  • 批准号:
    RGPIN-2019-04819
  • 财政年份:
    2019
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了