Development of Spectroscopic Methods for Optimizing Drinking Water Treatment Processes
开发优化饮用水处理过程的光谱方法
基本信息
- 批准号:RGPIN-2019-05449
- 负责人:
- 金额:$ 1.89万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Access to safe and clean drinking water is recognized as a human right by the United Nations. However, estimates place water sources for approximately 80% of the world's population under high threat levels from stressors such as intensive agriculture, population densification, and climate change. Compromised sources threaten the ability to produce clean drinking water in both developing and affluent nations, driving a need for increasingly sophisticated treatment and monitoring methods. For example, increasingly common extreme weather events (e.g. heavy rainfall) elevate risk of public exposure to pathogens from sewage overflows and pollutants from urban or agricultural run-off. High-risk conditions, which are often event-based (e.g. flooding), are amplified by limitations with our current real-time monitoring technologies. Available measures such as turbidity or conductivity are not sensitive or selective enough to accurately detect adverse conditions and inform treatment adjustments in the short time frame necessary to protect public health. In response to the need for improved real-time water quality monitoring, fluorescence spectroscopy (FS) is receiving increased attention due to its sensitivity and specificity to many risk indicators and environmental pollutants. FS has shown promise to characterize the chemically diverse mixture of organic matter in water that defines treatment efficiency. Furthermore, FS has an underutilized potential to provide chemical fingerprints of pollutants such as aromatic hydrocarbons present in petrochemical spills and indicators of sewage impacts in source waters. While there is considerable promise of FS monitoring in water treatment, challenges with data analysis limit its use. Superposition of signals, non-linear effects, and natural variations in water quality impede identifying compounds of interest in the high-dimensional spectra. Reasonable approaches to handle and leverage real-time fluorescence data have not been developed. The goal of this research program is to address the data analysis challenges and realize the potential of FS for water quality monitoring. This program builds on recent interest and my successes in developing machine learning approaches tailored to solve these data challenges. This program addresses a long-term vision of improved resiliency and sustainability of drinking water production in the context of mounting pressures in two ways. First, developing FS to provide real-time and relevant pictures of changing water quality associated with public health risk. Second, leveraging FS for its unprecedented ability to understand interactions of organic matter with treatment processes, informing optimization research and enabling adoption of advanced treatment systems that effectively mitigate challenging source conditions. This research program presents unique opportunities for HQP, providing hands-on training in advanced water treatment, spectroscopy, and machine learning.
获得安全和清洁的饮用水被联合国视为一项人权。然而,据估计,世界上约 80% 人口的水源受到集约农业、人口密集化和气候变化等压力因素的高度威胁。水源受损威胁着发展中国家和富裕国家生产清洁饮用水的能力,从而推动了对日益复杂的处理和监测方法的需求。例如,日益常见的极端天气事件(例如强降雨)增加了公众接触污水溢出病原体和城市或农业径流污染物的风险。高风险状况通常是基于事件的(例如洪水),由于我们当前实时监控技术的限制而被放大。浊度或电导率等现有测量方法不够灵敏或选择性不够,无法准确检测不利条件并在保护公众健康所需的短时间内通知治疗调整。为了满足改进实时水质监测的需求,荧光光谱(FS)由于其对许多风险指标和环境污染物的敏感性和特异性而受到越来越多的关注。 FS 有望表征水中有机物的化学多样性混合物,从而确定处理效率。此外,FS 在提供污染物的化学指纹(例如石化泄漏中存在的芳香烃)和源水中污水影响指标方面尚未得到充分利用。虽然 FS 监测在水处理领域有着广阔的前景,但数据分析方面的挑战限制了其使用。信号叠加、非线性效应和水质的自然变化阻碍了高维光谱中目标化合物的识别。尚未开发出处理和利用实时荧光数据的合理方法。该研究计划的目标是解决数据分析挑战并实现 FS 在水质监测方面的潜力。该计划建立在我最近对开发专门用于解决这些数据挑战的机器学习方法的兴趣和成功之上。该计划以两种方式解决了在压力不断增加的情况下提高饮用水生产的弹性和可持续性的长期愿景。首先,开发 FS 以提供与公共卫生风险相关的水质变化的实时相关图片。其次,利用 FS 前所未有的能力来理解有机物与处理过程的相互作用,为优化研究提供信息,并支持采用先进的处理系统,有效缓解具有挑战性的源条件。该研究项目为 HQP 提供了独特的机会,提供先进水处理、光谱学和机器学习方面的实践培训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peleato, Nicolas其他文献
Peleato, Nicolas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peleato, Nicolas', 18)}}的其他基金
Development of Spectroscopic Methods for Optimizing Drinking Water Treatment Processes
开发优化饮用水处理过程的光谱方法
- 批准号:
RGPIN-2019-05449 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Assessment of ultraviolet disinfection for unfiltered water supplies
未过滤供水的紫外线消毒评估
- 批准号:
549319-2019 - 财政年份:2021
- 资助金额:
$ 1.89万 - 项目类别:
Alliance Grants
Assessment of ultraviolet disinfection for unfiltered water supplies
未过滤供水的紫外线消毒评估
- 批准号:
549319-2019 - 财政年份:2020
- 资助金额:
$ 1.89万 - 项目类别:
Alliance Grants
Development of Spectroscopic Methods for Optimizing Drinking Water Treatment Processes
开发优化饮用水处理过程的光谱方法
- 批准号:
RGPIN-2019-05449 - 财政年份:2020
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Development of Spectroscopic Methods for Optimizing Drinking Water Treatment Processes
开发优化饮用水处理过程的光谱方法
- 批准号:
DGECR-2019-00340 - 财政年份:2019
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Launch Supplement
Development of Spectroscopic Methods for Optimizing Drinking Water Treatment Processes
开发优化饮用水处理过程的光谱方法
- 批准号:
RGPIN-2019-05449 - 财政年份:2019
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Development of Spectroscopic Methods for Optimizing Drinking Water Treatment Processes
开发优化饮用水处理过程的光谱方法
- 批准号:
RGPIN-2019-05449 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Development of spectroscopic diagnostic methods for magnetically confined plasmas using high sensitivity measurements of Stark and Zeeman effects
利用斯塔克效应和塞曼效应的高灵敏度测量开发磁约束等离子体的光谱诊断方法
- 批准号:
21H01054 - 财政年份:2021
- 资助金额:
$ 1.89万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of Spectroscopic Methods for Optimizing Drinking Water Treatment Processes
开发优化饮用水处理过程的光谱方法
- 批准号:
RGPIN-2019-05449 - 财政年份:2020
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Development of Spectroscopic Methods for Optimizing Drinking Water Treatment Processes
开发优化饮用水处理过程的光谱方法
- 批准号:
DGECR-2019-00340 - 财政年份:2019
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Launch Supplement
Development of tip-enhanced nonlinear and time-resolved spectroscopic methods at the single molecular level
单分子水平尖端增强非线性和时间分辨光谱方法的发展
- 批准号:
19H00889 - 财政年份:2019
- 资助金额:
$ 1.89万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Development of Spectroscopic Methods for Optimizing Drinking Water Treatment Processes
开发优化饮用水处理过程的光谱方法
- 批准号:
RGPIN-2019-05449 - 财政年份:2019
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Development of Coherent Spectroscopic Methods using Dual-Comb
使用双梳开发相干光谱方法
- 批准号:
17K14322 - 财政年份:2017
- 资助金额:
$ 1.89万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Development, benchmarking and application of improved quantum-classical trajectory surface-hopping methods for the ab initio simulation of photoinduced hydrogen-atom transfer reactions and the computation of time-resolved spectroscopic signals
改进的量子经典轨迹表面跳跃方法的开发、基准测试和应用,用于光诱导氢原子转移反应的从头计算和时间分辨光谱信号的计算
- 批准号:
319571271 - 财政年份:2016
- 资助金额:
$ 1.89万 - 项目类别:
Research Grants
Development of laser spectroscopic methods for quantification of 14C
14C 定量激光光谱方法的开发
- 批准号:
8743804 - 财政年份:2014
- 资助金额:
$ 1.89万 - 项目类别:
Development of laser spectroscopic methods for quantification of 14C
14C 定量激光光谱方法的开发
- 批准号:
8931002 - 财政年份:2014
- 资助金额:
$ 1.89万 - 项目类别:














{{item.name}}会员




